首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用溶胶-凝胶法制备掺杂Zn O的Ti O2复合半导体,用X射线衍射和电镜扫描对晶体结构进行表征,最优的锌掺杂量、镧掺杂量、煅烧温度分别为3%,0.3%,500℃。以活性染料配水作为目标降解物,考察了对6种不同活性染料的光催化氧化效果。0.3%镧改性Zn O-Ti O2对活性艳蓝X-BR的色度去除率可以达到97.3%,得到最佳脱色率的条件是使用紫外光作为光源,光照时间2 h,初始质量浓度100 mg/L,p H值控制在1左右,氯离子浓度控制在1 mol/L。  相似文献   

2.
为提高纳米TiO2的可见光催化活性,采用溶胶-凝胶法制备了一种掺杂型纳米可见光催化剂Co/N/S/TiO2,并用正交试验法对其制备工艺进行了优化;用紫外-可见漫反射光谱(DRS)、X射线衍射(XRD)、透射电子显微镜(TEM)等方法对其吸光性能和结构进行了表征;以活性艳蓝X-BR溶液为光降解模型,对其可见光催化活性进行了评价,并与Degussa P25进行对比.结果表明,在Co:N:S:Ti物质的量比为0.15:0.2:0.2:1、煅烧温度为400℃、煅烧时间为1h的最佳制备条件下,所制得的Co/N/S/TiO2光催化剂为单一锐钛矿晶相,平均粒径为8~ 10 nm,比表面积约为192.19 m2/g.Co/N/S/TiO2光催化剂吸收边可红移至近900 nm,可见光催化活性突出,在纯粹可见光(λ>400 nm)下光解活性艳蓝X-BR溶液120 min的降解率可达91.5%,与Degussa P25相比,其可见光催化活性提高了80.1%,且重复使用性能良好.  相似文献   

3.
以氯化锌为活化剂,城市污泥与谷壳为原料热解制备含碳吸附剂,通过单因素实验和正交实验确定最佳制备条件,并对吸附剂进行了SEM和比表面积分析。最佳制备条件为:污泥谷壳干重比2∶3,ZnCl2浓度4 mol/L,固液比1∶2.5,热解温度500℃。比表面积测试结果为560.4 m2/g,SEM分析也表明制得的吸附剂孔道发达,说明该吸附剂适合做吸附材料。  相似文献   

4.
采用溶胶-凝胶法制备了TiO2/活性炭(TiO2/AC)复合光催化剂,并考察载体粒度、浸渍时间、煅烧温度对其光催化降解腐殖酸性能的影响,确定了最佳条件.利用XRD(X射线衍射)、氮吸附等手段对复合催化剂的物理特性进行了表征;探讨了催化剂投加量、重复使用次数等因素对光催化降解腐殖酸反应的影响.结果表明:试验制备的TiO2/AC复合催化剂具有大的比表面积,纳米TiO2晶粒为锐钛矿型且尺寸较小;催化剂投加量为2 g/L、反应3 h,可去除腐殖酸溶液的UV254值96%,具有比简单悬浮体系更高的光催化性能.  相似文献   

5.
在脱硝喷淋系统上研究了各实验条件对Fe(Ⅱ)EDTA络合脱除NO的影响,结果表明:吸收液的酸碱度影响Fe~(2+)/EDTA络合形式,当溶液处于弱酸、弱碱条件下有效脱硝络合形式Fe(Ⅱ)EDTA浓度最高;当配制Fe(Ⅱ)EDTA络合剂时,Fe~(2+)/EDTA摩尔比为3 2时脱硝效率最大,过多的Fe~(2+)或EDTA不利于脱硝;当温度由30℃上升至80℃时脱硝效率下降了36%;在0.05mol/L的Fe(Ⅱ)EDTA的吸收液中加入0.1mol/L的氨水,可实现40%的脱硝率和90%的脱硫率。  相似文献   

6.
掺Fe金红石TiO2的制备及其可见光催化活性的评价研究   总被引:1,自引:1,他引:0  
为提高金红石型TiO2的可见光吸收性能和光催化活性,以FeC2O4为Fe源,用浸渍法制备了掺铁金红石TiO2光催化剂。采用XRD、UV-Vis等手段对催化剂进行表征;以阿特拉津为目标污染物,在Vis/H2O2条件下对其催化活性进行了评估。结果表明,Fe以Fe2O3的形式负载在金红石型TiO2的表面;掺铁后金红石型TiO2显著拓宽了其可见光的吸收范围;煅烧温度为400℃时制得的光催化剂Fe-R-400℃的粒径结构和光催化活性最好。以Fe质量分数为1%的Fe-R-400℃作为光催化剂,控制反应体系的初始pH=3,催化剂投加质量浓度为1 g/L,H2O2初始浓度为1 mmol/L,经可见光照射反应15 min后,对初始质量浓度为10 mg/L的阿特拉津的去除率可达95.7%。催化剂循环试验表明,Fe在金红石TiO2表面负载比较牢固,催化剂具有较好的稳定性和重复使用性能。  相似文献   

7.
采用微波辐射法制备TiO2/活性炭(TiO2/AC)复合光催化剂,并利用该催化剂对橙黄Ⅱ进行光催化降解。考察了乙醇与钛酸丁酯(TNB)的体积比,水、乙酸和活性炭的加入量,微波功率,微波辐射时间,煅烧温度等因素对TiO2/AC催化活性的影响,确定了制备TiO2/AC的最佳工艺条件以及TiO2/AC光催化降解橙黄Ⅱ的工艺条件。结果表明,制备TiO2/AC的最佳工艺条件为:乙醇与钛酸丁酯(TNB)体积比为8∶1(即乙醇24 mL,钛酸丁酯3 mL),水、乙酸和活性炭的加入量分别为0.8mL、0.6 mL和2 g,微波功率500 W,微波辐射时间1 min,煅烧温度500℃,煅烧时间为2 h。在TiO2/AC用量为0.3 g、反应时间为1 h、pH为3的条件下,25 mg/L橙黄Ⅱ溶液的降解率达95%以上。  相似文献   

8.
采用Fe(NO3)3催化乙酸对玉米秸秆进行预处理,以提高水解反应的效率,考察了乙酸初始质量分数和预处理时间对玉米秸秆水解反应的影响。结果表明,Fe(NO3)3可有效提高乙酸预处理秸秆的水解率。当使用0.05 mol/L Fe(NO3)3催化5%乙酸预处理秸秆15min时,与单独乙酸预处理玉米秸秆相比,水解液中葡萄糖、木糖和阿拉伯糖的质量浓度分别提高了110%、250%和10%,同时秸秆中半纤维素和纤维素的水解率分别提高了49%和14%;与单独0.05 mol/L Fe(NO3)3预处理玉米秸秆相比,水解液中相应的各单糖质量浓度分别提高了131%、68%和61%。随乙酸初始质量分数增加,水解反应中各产物的质量浓度均逐渐增加。乙酸初始质量分数从1%增加到5%,水解玉米秸秆15 min时,水解液中葡萄糖、木糖和阿拉伯糖的质量浓度分别从8.67 g/L、11.68 g/L和3.19 g/L升高到11.86 g/L、13.78 g/L和3.23 g/L。延长预处理时间有利于秸秆的水解反应,但太长会导致玉米秸杆中半纤维素和纤维素的水解率增加变缓。当采用0.05 mol/L Fe(NO3)3催化5%乙酸时,预处理时间从15 min延长到60 min,半纤维素的水解率从74.7%逐渐升高到92.9%,而纤维素的水解率没有变化,稳定在26%。  相似文献   

9.
以开封市西区污水处理厂剩余污泥为原料,在酸性条件下添加十六烷基三甲基溴化铵(CTAB)制备了改性污泥吸附剂。通过静态吸附实验考察了污泥改性前后对Cr(VI)废水的吸附性能。结果表明,最佳改性条件为在0.6 mg/L的HCl溶液中,按液固比为20∶1加入污泥,控制温度95℃以上添加1%的CTAB,反应5 h;SEM,BET分析表明,污泥改性后其表面以及孔洞内变得更加粗糙和疏松,污泥BET比表面积增大了2.3倍,总孔容增大了1.7倍,红外光谱表明CTAB基团嫁接到污泥结构中;当Cr(VI)初始质量浓度20 mg/L、最佳pH为2.0、反应温度25℃,改性吸附剂投加量为8.0 g/L、吸附0.5 h后,Cr(VI)的去除率可达到91.3%,去除率比改性前增大了53.5%。  相似文献   

10.
介绍了利用纳米Fe强化污泥高效产甲烷的方法。实验结果表明,纳米Fe最佳投放量为6 g/L,相应的甲烷产量(以VSS计)为198 m L/g。机理研究表明,纳米Fe能够促进污泥水解、酸化,进而促进甲烷的积累。  相似文献   

11.
采用原位氧化沉淀法制备出仿酶型Fe_3O_4/焦炭,并将其作为非均相类Fenton催化剂用于对硝基苯酚(P-NP)废水的降解;采用扫描电子显微镜(SEM)、X射线衍射(XRD)和红外光谱(FTIR)对样品进行表征。表征结果表明,Fe_3O_4牢固地负载在焦炭上,并有利于Fe_3O_4的分散及粒径的减小。实验结果表明,催化剂降解P-NP的最佳条件为:催化剂投加量1.2 g/L,[H2O2]=30 mmol/L,p H=3.0,温度30℃,P-NP的去除率达到99%。Fe_3O_4/焦炭结构稳定,可再生使用。  相似文献   

12.
甲基橙废水的常温常压催化湿式氧化实验研究   总被引:8,自引:0,他引:8  
以Fe、Mn、Cu和Zn的金属氧化物为活性组分,以γ-Al2O3为载体,制备了负载型催化剂,并分别以H2O2和NaClO为氧化剂,对比了在常温常压条件下催化湿式氧化工艺中处理甲基橙模拟废水的效果.结果表明,Fe/y-Al2O3催化剂较其他催化剂表现出较好的催化活性和稳定性,H2O2为适宜的氧化剂.在Fe/γ-Al2O3加入量为10g/L,氧化剂H2O2加入量为5 mL/L的条件下,处理甲基橙质量浓度为500 mg/L的模拟废水,其脱色率和COD去除率在3 h内均能达到70%以上.与传统的Fenton试剂法相比,以Fe/γ-Al2O3为催化剂的催化湿式过氧化氢氧化工艺具有矿化程度高,催化剂易回收再用的优点.  相似文献   

13.
以某污水厂的氧化沟污泥和剩余污泥为培养对象,经厌氧驯化成以硫酸盐还原菌(SRB)占优的污泥.在pH值为6.0-7.0,最佳温度为35℃,硫酸盐质量浓度为4 g/L,剩余污泥固定化小球在反应时间为24 h,Zn(Ⅱ)的进水质量浓度为400 mg/L时,Zn(Ⅱ)的去除率达到了100%,而氧化沟污泥固定化小球Zn(Ⅱ)的去除率只有90%左右;剩余污泥固定化小球在反应时间为8 h,Cd(Ⅱ)的进水质量浓度为500 mg/L时,Cd(Ⅱ)的去除率就达到了95%左右,而氧化沟污泥固定化小球Cd(Ⅱ)的去除率不到80%.实验结果表明剩余污泥是硫酸盐还原菌污泥固定化技术的最佳污泥.  相似文献   

14.
分别以好氧颗粒污泥和絮状污泥为吸附剂,在不同的吸附条件(pH值、吸附时间、吸附温度、不同浓度离子共存)下,探讨对Cu~(2+)和Cr~(6+)的吸附效果。试验结果显示,两种形态污泥对Cu~(2+)的吸附能力较强,其中颗粒污泥最佳吸附条件为pH值为7.1,吸附时间30 min,温度30℃,而絮状污泥在弱酸的环境下(pH值为4~7.1)对Cu~(2+)的吸附效果较好;在上述条件下,絮状污泥和颗粒污泥对Cu~(2+)的吸附量分别为22.26 mg/g和23.62 mg/g;Cu~(2+)的存在有利于污泥对Cr~(6+)的吸附,反之则不然。  相似文献   

15.
通过对含油污泥进行铝溶出实验和制备聚合氯化铝(PAC)及其应用研究,实现含油污泥的资源化处理及再生利用。结果表明,在70℃下,采用4 mol/L的硫酸30 m L,铝溶出率达到最大值44.04%,加入少量乙醇,其溶出率更大,但实际应用中会消耗很多能量,应予以考虑。对含油污泥进行再生利用的方法研究,采用盐酸处理含油污泥进行PAC制备并用其处理模拟染料废水,结果表明,在盐基度80%条件下,对于低浓度模拟染料废水,PAC最佳投加量为2.5 m L/L;对高浓度模拟染料废水,PAC最佳投加量为15 m L/L。  相似文献   

16.
选用硫粉(S0)和黄铁矿粉(Fe S2)作为复合能源物质,以生物沥浸处理城市污泥脱水。通过正交试验分析了不同能源物质和接种物配比下的污泥脱水、沉降性能。结果表明:能源物质和接种物的合理配比为S0投量2 g/L、Fe S2投量6 g/L、接种物投量20%,在该投量下进行生物沥浸试验,污泥比阻由初始的3.35×1012m/kg降至3.90×1011m/kg,降幅达88.36%,污泥沉降率由68%升至78%;沥浸过程中污泥比阻、沉降率与p H值、ORP、Fe2+、Fe3+、总Fe和SO2-4质量浓度的变化同步,表明污泥脱水和沉降性能的改善是酸化、氧化和絮凝的协同作用所致;同时,细菌总数、总大肠菌群和粪大肠菌群的灭活率均在99%以上,表明生物沥浸还可高效杀灭病原微生物。  相似文献   

17.
以聚乙烯吡咯烷酮(PVP)为稳定剂,采用化学沉积法制备了磷酸银/树脂复合物,降解亚甲基蓝,研究其光催化活性,并对样品进行了XRD和SEM表征。探讨了不同的光源、催化剂投加量、PVP含量、p H值等因素对亚甲基蓝降解率的影响。结果表明,在太阳光(夏天早上9点到11点的阳光)下,偏酸介质中,催化剂用量为0.8 g/L,PVP质量分数为0.01%的磷酸银/树脂复合物,液面高度为15 cm的条件下对亚甲基蓝有最佳降解效果。  相似文献   

18.
用碱溶酸析法回收造纸污泥中的木质素,经与季铵盐接枝聚合,制备木质素季铵盐脱色絮凝剂.研究催化剂种类、反应物料配比、反应温度和时间等因素对产品脱色性能的影响,优化絮凝剂合成的工艺条件.确定取得最佳处理效果时的优化操作条件为:以10 mol·L-1 NaOH作催化剂,反应物配料比为m(木质素)∶m(季铵盐单体)=1∶2,于70 ℃下反应4 h.将产品用于酸性黑210、皮红和皮黄等多种模拟染料溶液的脱色处理中,结果表明,制备的木质素季铵盐絮凝剂对多种染料具有良好的脱色效果,当絮凝剂投加量为3.2 g·L-1、染料溶液pH值为2~3时,脱色率均达90%以上.  相似文献   

19.
以花生壳为原料,用3种不同制备类型的花生壳活性炭做对比实验,对活性炭制备时的活化状态、炭化温度、炭化时间以及脱色时的吸附时间和投加量等因素进行了探讨,研究了改性花生壳活性炭对活性艳蓝X-BR染料溶液的脱色效果。结果表明,炭化温度为450℃,炭化时间为3 h,先用磷酸活化然后炭化制得的活性炭性能最为优良;其对活性艳蓝溶液进行脱色时的最佳投加量为4 g/L,反应时间为2 h。  相似文献   

20.
以炼钢污泥为主要原料制备聚硅硫酸铁铝(PFASS)复合絮凝剂,铁铝总浓度为3.0 mol/L。深度处理焦化废水,确定最佳铁与铝物质的量比为9∶1,硅与铁+铝物质的量比为1∶30。采用红外光谱、X射线衍射及扫描电镜等手段分析了PFASS的结构与形貌。结果表明:PFASS共聚物为无定型结构;形貌为片状微粒叠加而成的球形;PFASS中部分铁离子、铝离子及其水解络合离子可与聚硅酸起络合反应,生成共聚物。在pH值为7.0~9.0、PFASS的投加量为348 mg/L、沉淀时间为40 min的条件下,对浊度、色度、CODCr的去除率分别达到98%、68%和61%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号