共查询到20条相似文献,搜索用时 15 毫秒
1.
Kang, Min‐Goo and Gwang‐Man Lee, 2011. Multicriteria Evaluation of Water Resources Sustainability in the Context of Watershed Management. Journal of the American Water Resources Association (JAWRA) 47(4):813‐827. DOI: 10.1111/j.1752‐1688.2011.00559.x Abstract: To evaluate water resources sustainability at the watershed scale within a river basin’s context, the Water Resources Sustainability Evaluation Model is developed. The model employs 4 criteria (economic efficiency, social equity, environmental conservation, and maintenance capacity) and has 16 indicators, integrating them using their relative weights. The model is applied to evaluate the water resources sustainability of watersheds in the Geum River basin, South Korea. A geographic information system is employed to efficiently build a database for the indicators, and the values of the indicators are normalized using the probability distribution functions fitted to the datasets of the indicators. The evaluation results show that, overall, the water resources sustainability of the watersheds in the upper basin is better than other areas due to the good environmental conditions and the dam management policies of South Korea. The analysis of the correlations among the model’s components and the comparison between the results of the model and the Water Poverty Index show that the model can provide reasonable evaluation results for the water resources sustainability of watersheds. Consequently, it is concluded that the model can be an effective tool for evaluating the states of water resource management from the perspective of sustainable development and provide a basis on which to create policies for improving any inadequacies in watersheds. 相似文献
2.
Jacob A. Macholl Katherine A. Clancy Paul M. McGinley 《Journal of the American Water Resources Association》2011,47(1):114-125
Macholl, Jacob A., Katherine A. Clancy, and Paul M. McGinley, 2011. Using a GIS Model to Identify Internally Drained Areas and Runoff Contribution in a Glaciated Watershed. Journal of the American Water Resources Association (JAWRA) 47(1):114‐125. DOI: 10.1111/j.1752‐1688.2010.00495.x Abstract: Glaciated watersheds are not easily delineated using geographic information systems’ elevation‐based algorithms, especially where stream networks are disconnected and there are large regions of internally drained areas. This paper presents the results of an analysis using the Potential Contributing Source Area (PCSA) model to identify potential contributing areas, defined as areas from which runoff is physically capable of reaching a drainage network. The investigation was conducted to define the potential contributing areas in a glaciated region of northwest Wisconsin. The curve number (CN) method was used to predict runoff volumes in the watershed. The streamflows of four tributaries were measured and the runoff portion of the hydrograph quantified to be compared with runoff estimates calculated using the potential contributing areas and the traditional catchment area. Runoff producing events occurred, but the use of area‐weighted CN values was unsuccessful in modeling runoff due to all precipitation depths during the study period falling below the initial abstraction. A distributed CN approach provided runoff estimates that were generally better using the potential contributing areas compared with using the traditional catchment area. The extent of the minimum contributing area, estimated for a range of precipitation events, was found to be substantially less than the potential contributing areas, suggesting that the PCSA model delimits the maximum boundary of potential contributing areas. 相似文献
3.
Hatim O. Sharif Almoutaz A. Hassan Sazzad Bin-Shafique Hongjie Xie Jon Zeitler 《Journal of the American Water Resources Association》2010,46(5):881-891
Sharif, Hatim O., Almoutaz A. Hassan, Sazzad Bin-Shafique, Hongjie Xie, and Jon Zeitler, 2010. Hydrologic Modeling of an Extreme Flood in the Guadalupe River in Texas. Journal of the American Water Resources Association (JAWRA) 1-11. DOI: 10.1111/j.1752-1688.2010.00459.x Abstract: Many of the storms creating the greatest rainfall depths in Texas, measured over durations ranging from one minute to 48 hours, have occurred in the Texas Hill Country area. The upstream portion of the Guadalupe River Basin, located in the Texas Hill Country, is susceptible to flooding and rapid runoff due to thin soils, exposed bedrock, and sparse vegetation, in addition to the Balcones Escarpment uplift contributing to precipitation enhancement. In November 2004, a moist air mass from the Gulf of Mexico combined with moist air from the Pacific Ocean resulted in the wettest November in Texas since 1895. Although the peak discharges were not the highest on record, the U.S. Geological Survey (USGS) stream gauge on the Guadalupe River at Gonzales, Texas reported a daily mean discharge of 2,304 m3/s on November 23, 2004 (average discharge is 53 m3/s). In this paper, we examine the meteorological conditions that led to this event and apply a two-dimensional, physically based, distributed-parameter hydrologic model to simulate the response of a portion of the basin during this event. The study results clearly demonstrate the ability of physically based, distributed-parameter simulations, driven by operational radar rainfall products, to adequately model the cumulative effect of two rainfall events and route inflows from three upstream watersheds without the need for significant calibration. 相似文献
4.
Kerim E. Dickson David A. Dzombak 《Journal of the American Water Resources Association》2019,55(4):1038-1052
Interbasin transfers (IBTs) are manmade transfers of water that cross basin boundaries. In an analysis of 2016 data, this work identified 2,161 reaches crossing United States (U.S.) Geological Survey hydrologic unit code 6 boundaries in the U.S. The objectives of this study were to characterize and classify IBTs, and examine the development drivers for a subset of 109 (~5%) of the IBT reaches through examination of samples from different climate regions of the U.S. The IBTs were classified as being near irrigated agricultural lands, near cities, or rural IBTs not near cities or irrigated land. IBTs near both cities and irrigated agricultural land were designated as city + irrigated agriculture. The 109 samples were selected, based on approximate proportional distribution to the total number of IBTs within each climate region, with representation of areas having a high density of IBTs. Analysis of the samples revealed that in the U.S., there have been four major drivers for basin transfers: irrigation for agriculture, municipal and industrial water supply, commercial shipping or navigation, and drainage or flood management. The most common has been drainage or flood management, though IBTs at least partially driven by agricultural needs are also prevalent. The majority of the sampled IBTs were constructed between 1880 and 1980, with peaks in development between 1900–1910 and 1960–1970. The samples also showed the drivers of IBT development evolved over time, reflecting changes in regional economies, populations, and needs. 相似文献
5.
Robert S. Ahl Scott W. Woods Hans R. Zuuring 《Journal of the American Water Resources Association》2008,44(6):1411-1430
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment. 相似文献
6.
Andres R. Garcia-Martin Frederick N. Scatena Glenn S. Warner Daniel L. Civco 《Journal of the American Water Resources Association》1996,32(6):1259-1271
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent. 相似文献
7.
Katherine L. Meierdiercks James A. Smith Mary Lynn Baeck Andrew J. Miller 《Journal of the American Water Resources Association》2010,46(5):932-943
Meierdiercks, Katherine L., James A. Smith, Mary Lynn Baeck, and Andrew J. Miller, 2010. Analyses of Urban Drainage Network Structure and Its Impact on Hydrologic Response. Journal of the American Water Resources Association (JAWRA) 1-12. DOI: 10.1111/j.1752-1688.2010.00465.x Abstract: Urban flood studies have linked the severity of flooding to the percent imperviousness or land use classifications of a watershed, but relatively little attention has been given to the impact of urban drainage networks on hydrologic response. The drainage network, which can include storm pipes, surface channels, street gutters, and stormwater management ponds, is examined in the Dead Run watershed (14.3 km2). Comprehensive digital representations of the urban drainage network in Dead Run were developed and provide a key observational resource for analyses of urban drainage networks and their impact on hydrologic response. Analyses in this study focus on three headwater subbasins with drainage areas ranging from 1.3 to 1.9 km2 and that exhibit striking contrasts in their patterns and history of development. It is shown that the drainage networks of the three subbasins, like natural river networks, exhibit characteristic structures and that these features play critical roles in determining urban hydrologic response. Hydrologic modeling analyses utilize the Environmental Protection Agency’s Stormwater Management Model (SWMM), which provides a flexible platform for examining the impacts of drainage network structure on hydrologic response. Results of SWMM modeling analyses suggest that drainage density and presence of stormwater ponds impact peak discharge more significantly in the Dead Run subbasins than the percent impervious or land use type of the subbasins. 相似文献
8.
Paul H. Martin Eugene J. LeBoeuf James P. Dobbins Edsel B. Daniel Mark D. Abkowitz 《Journal of the American Water Resources Association》2005,41(6):1471-1487
Two distinctive, independently developed technologies, geographic information systems (GIS) and predictive water resource models, are being interfaced with varying degrees of sophistication in efforts to simultaneously examine spatial and temporal phenomena. Neither technology was initially developed to interact with the other, and as a result, multiple approaches to interface GIS with water resource models exist. Additionally, continued model enhancements and the development of graphical user interfaces (GUIs) have encouraged the development of application “suites” for evaluation and visualization of engineering problems. Currently, disparities in spatial scales, data accessibility, modeling software preferences, and computer resources availability prevent application of a universal interfacing approach. This paper provides a state‐of‐the‐art critical review of current trends in interfacing GIS with predictive water resource models. Emphasis is placed on discussing limitations to efficient interfacing and potential future directions, including recommendations for overcoming many current challenges. 相似文献
9.
Carolyn T. Hunsaker Thomas W. Whitaker Roger C. Bales 《Journal of the American Water Resources Association》2012,48(4):667-678
Hunsaker, Carolyn T., Thomas W. Whitaker, and Roger C. Bales, 2012. Snowmelt Runoff and Water Yield Along Elevation and Temperature Gradients in California’s Southern Sierra Nevada. Journal of the American Water Resources Association (JAWRA) 48(4): 667‐678. DOI: 10.1111/j.1752‐1688.2012.00641.x Abstract: Differences in hydrologic response across the rain‐snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment elevation over the range 1,800‐2,400 m. Higher‐elevation catchments have lower vegetation density, shallow soils with rapid permeability, and a shorter growing season when compared with those at lower elevations. Average annual temperatures ranged from 6.8°C at 2,400 m to 8.6 at 1,950 m elevation, with annual precipitation being 75‐95% snow at the highest elevations vs. 20‐50% at the lowest. Peak discharge lagged peak snow accumulation on the order of 60 days at the higher elevations and 20 to 30 days at the lower elevations. Snowmelt dominated the daily streamflow cycle over a period of about 30 days in higher elevation catchments, followed by a 15‐day transition to evapotranspiration dominating the daily streamflow cycle. Discharge from lower elevation catchments was rainfall dominated in spring, with the transition to evapotranspiration dominance being less distinct. Climate warming that results in a longer growing season and a shift from snow to rain would result in earlier runoff and a lower runoff ratio. 相似文献
10.
Creighton R. Omer E. James Nelson Alan K. Zundel 《Journal of the American Water Resources Association》2003,39(2):467-475
ABSTRACT: Current data collection technologies such as light detection and ranging (LIDAR) produce dense digital terrain data that result in more accurate digital terrain models (DTMs) for engineering applications. However, such data are redundant and often cumbersome for hydrologic and hydraulic modeling purposes. Data filtering provides a means of eliminating redundant points and facilitates model preparation. This paper demonstrates the impact of varied data resolution on a case study completed for a 2.3 mi2 area with mild slopes (about 001 ft/ft) along Leith Creek near Laurinburg, North Carolina. For the original data set and seven filtered data sets, filtering induced changes in elevation, area, and hydraulic radius were determined for 10 water depths at 23 cross sections. Water surface elevations resulting from HEC‐RAS (Hydrologic Engineering Center‐River Analysis System) models for each data set were then compared. A hydraulic model sensitivity analysis was also conducted to compare filtering error to error introduced by variation in flow rates and roughness values. Finally, automated floodplain delineation was performed for each filter level based on the computed hydraulic model results and the filtered LIDAR elevations. Data filtering results indicate that significant time savings are achieved throughout the modeling process and that filtering to four degrees can be performed without compromising cross‐sectional geometry, hydraulic model results, or floodplain delineation results. 相似文献
11.
Xander Huggins Tom Gleeson Hailey Eckstrand Ben Kerr 《Journal of the American Water Resources Association》2018,54(5):1024-1038
Groundwater pumping depletes streamflow, which can have significant ecological impacts depending on the magnitude of depletion relative to environmental flow needs. Streamflow depletion estimates from groundwater pumping have been quantified using both analytical and numerical methods, but are not routinely compared to environmental flow needs or used in practical water management tools. Decision support tools that incorporate groundwater dynamics are becoming increasingly necessary for water managers as groundwater regulations become more important in environmental policy, particularly concerning the preservation of environmental flow needs. We develop and apply methods for a web‐based decision support tool for conjunctive groundwater and surface water management, demonstrated using a case study watershed in British Columbia, Canada. Open‐source data are analyzed with a combination of spatial algorithms and previously developed analytical models, such that the tool can be applied to other regions. Streamflow depletion estimates are calculated in four regions in the largely undeveloped Bulkley Valley, British Columbia. Our transparent methodology has geographic and data input flexibility which is a significant improvement on currently existing water management tool methods. 相似文献
12.
Joshua C. Galster Frank J. Pazzaglia Dru Germanoski 《Journal of the American Water Resources Association》2008,44(4):948-960
Abstract: Land use in a watershed is commonly held to exert a strong influence on trunk channel form and process. Land use changes act over human time‐scales, which are short enough to measure effects on channels directly using historic aerial photographs. We show that high‐resolution topographic surveys for the channels of paired watersheds in the Lehigh Valley, Pennsylvania, are comparable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in most aspects except in their respective amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony Creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data, in concert with other recent hydrologic data from the watersheds suggest that the increase in urban area‐generated peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river esthetics. 相似文献
13.
Scott M. Payne William W. Woessner 《Journal of the American Water Resources Association》2010,46(5):1003-1023
Payne, Scott M. and William W. Woessner, 2010. An Aquifer Classification System and Geographical Information System-Based Analysis Tool for Watershed Managers in the Western U.S. Journal of the American Water Resources Association (JAWRA) 46(5):1003-1023. DOI: 10.1111/j.1752-1688.2010.00472.x Abstract: Aquifers and groundwater systems can be classified using a variety of independent methods to characterize geologic and hydraulic properties, the degree of connection with surface water, and geochemical conditions. In light of a growing global demand for water, an approach for classifying groundwater systems at the watershed scale is needed. A comprehensive classification system is proposed that combines recognized methods and new approaches. The purpose of classification is to provide groundwater professionals, policy makers, and watershed managers with a widely applicable and repeatable system that reduces sometimes cumbersome complex databases and analyzes to straightforward terminology and graphical representations. The proposed classification system uses basin geology, aquifer productivity, water quality, and the degree of groundwater/surface water connection as classification criteria. The approach is based on literature values, reference databases, and fundamental hydrologic and hydrogeologic principles. The proposed classification system treats dataset completeness as a variable and includes a tiered assessment protocol that depends on the quality and quantity of data. In addition, it assembles and catalogs groundwater information using a consistent set of nomenclature. It is designed to analyze and display results using Geographical Information System mapping tools. 相似文献
14.
Huidae Cho Francisco Olivera 《Journal of the American Water Resources Association》2009,45(3):673-686
Abstract: The spatial variability of the data used in models includes the spatial discretization of the system into subsystems, the data resolution, and the spatial distribution of hydrologic features and parameters. In this study, we investigate the effect of the spatial distribution of land use, soil type, and precipitation on the simulated flows at the outlet of “small watersheds” (i.e., watersheds with times of concentration shorter than the model computational time step). The Soil and Water Assessment Tool model was used to estimate runoff and hydrographs. Different representations of the spatial data resulted in comparable model performances and even the use of uniform land use and soil type maps, instead of spatially distributed, was not noticeable. It was found that, although spatially distributed data help understand the characteristics of the watershed and provide valuable information to distributed hydrologic models, when the watershed is small, realistic representations of the spatial data do not necessarily improve the model performance. The results obtained from this study provide insights on the relevance of taking into account the spatial distribution of land use, soil type, and precipitation when modeling small watersheds. 相似文献
15.
Francisco Olivera Milver Valenzuela R. Srinivasan Janghwoan Choi Hiudae Cho Srikanth Koka Ashish Agrawal 《Journal of the American Water Resources Association》2006,42(2):295-309
This paper presents ArcGIS‐SWAT, a geodata model and geographic information system (GIS) interface for the Soil and Water Assessment Tool (SWAT). The ArcGIS‐SWAT data model is a system of geodatabases that store SWAT geographic, numeric, and text input data and results in an organized fashion. Thus, it is proposed that a single and comprehensive geodatabase be used as the repository of a SWAT simulation. The ArcGIS‐SWAT interface uses programming objects that conform to the Component Object Model (COM) design standard, which facilitate the use of functionality of other Windows‐based applications within ArcGIS‐SWAT. In particular, the use of MS Excel and MATLAB functionality for data analysis and visualization of results is demonstrated. Likewise, it is proposed to conduct hydrologic model integration through the sharing of information with a not‐model‐specific hub data model where information common to different models can be stored and from which it can be retrieved. As an example, it is demonstrated how the Hydrologic Modeling System (HMS) ‐ a computer application for flood analysis ‐ can use information originally developed by ArcGIS‐SWAT for SWAT. The application of ArcGIS‐SWAT to the Seco Creek watershed in Texas is presented. 相似文献
16.
Mark F. Colosimo Peter R. Wilcock 《Journal of the American Water Resources Association》2007,43(2):499-521
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments. 相似文献
17.
Dennis O’Grady 《Journal of the American Water Resources Association》2011,47(1):39-51
O’Grady, Dennis, 2011. Sociopolitical Conditions for Successful Water Quality Trading in the South Nation River Watershed, Ontario, Canada. Journal of the American Water Resources Association (JAWRA) 47(1):39‐51. DOI: 10.1111/j.1752‐1688.2010.00511.x Abstract: The South Nation River watershed has a regulated water quality trading program. Legally, wastewater dischargers must not discharge any increased loading of phosphorus (P) into receiving waters. New wastewater systems are now choosing trading instead of traditional P removal technology, and point source dischargers are buying P credits from rural landowners, primarily farmers. These credits are generated by constructing nonpoint source pollution control measures. Mathematical formulae are used to calculate the credits of P removed by each measure. A successful trading program requires several conditions, including community agreement, legislative backing, credit and cost certainty, simplified delivery and verification, written instruments, and legal liability protection. South Nation Conservation, a community‐based watershed organization, is the broker handling the transactions for these P credits. The program is run by a multi‐stakeholder committee, and all project field visits are done by farmers and not paid professionals. An independent evaluation showed higher opinions for the broker and regulatory agency, and most farmers were willing to, or had already, recommended the program to other farmers. 相似文献
18.
Thomas H. Epps Daniel R. Hitchcock Anand D. Jayakaran Drake R. Loflin Thomas M. Williams Devendra M. Amatya 《Journal of the American Water Resources Association》2013,49(1):76-89
Epps, Thomas H., Daniel R. Hitchcock, Anand D. Jayakaran, Drake R. Loflin, Thomas M. Williams, and Devendra M. Amatya, 2012. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12000 Abstract: Hydrologic monitoring was conducted in two first‐order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three‐year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph separation method that partitioned total streamflow into sustained base flow and direct runoff components. ROC ratios ranged from 0 to 0.32 on the Upper Debidue Creek (UDC) watershed and 0 to 0.57 on Watershed 80 (WS80); TSR results ranged from 0 to 0.93 at UDC and 0.01 to 0.74 at WS80. Variability in event runoff generation was attributed to seasonal trends in water table elevation fluctuation as regulated by evapotranspiration. Groundwater elevation breakpoints for each watershed were identified based on antecedent water table elevation, streamflow, ROCs, and TSRs. These thresholds represent the groundwater elevation above which event runoff generation increased sharply in response to rainfall. For effective coastal land use decision making, baseline watershed hydrology must be understood to serve as a benchmark for management goals, based on both seasonal and event‐based surface and groundwater interactions. 相似文献
19.
Nicholas A. Procopio 《Journal of the American Water Resources Association》2010,46(3):527-540
Procopio, Nicholas A., 2010. Hydrologic and Morphologic Variability of Streams With Different Cranberry Agriculture Histories, Southern New Jersey, United States. Journal of the American Water Resources Association (JAWRA) 46(3):527-540. DOI: 10.1111/j.1752-1688.2010.00432.x Abstract: The creation of reservoirs and the modification of stream channels are common practices used to facilitate the efficient production of cranberries. The potential impacts to hydrologic and geomorphic aspects of streamflow and channel structure have not been adequately assessed. In this study, the streamflow regime of 12 streams and the channel morphologies of 11 streams were compared for study sites in the Pinelands region of New Jersey with upstream active-cranberry bogs, upstream abandoned-cranberry bogs, and basins with no apparent agricultural history. Flow regime metrics included measures of low-flow, median-flow, and bankfull discharge, two measures of streamflow variability (spread and a modified Richards-Baker Flashiness index), and the frequency of overbank flooding. Stream-channel morphology metrics included average bank slope, average bankfull width, average bankfull depth, average bankfull width-to-depth ratio, and average bankfull area. No significant differences between stream types were apparent for any of the metrics. Basin-area normalized streamflow values of all 12 study sites were highly correlated to each other. Significant relationships existed between some of the flow-regime and channel-morphology metrics. Due to the lack of significant differences between stream types, it appears that neither historic nor current cranberry agricultural practices considerably influence flow regimes or the channel morphology of streams in the New Jersey Pinelands. 相似文献
20.
Mathias J. Collins James C. Knox 《Journal of the American Water Resources Association》2003,39(2):487-500
ABSTRACT: Periodic surveys of the upper Mississippi River since 1866 and a discharge record of nearly equal length provided an opportunity to learn more about the magnitudes and rates of geomorphic processes at work in large stream systems. Furthermore, geomorphic and hydrologic adjustments could be evaluated in relation to watershed land use changes, small‐scale climate fluctuations, and considerable modifications to the channel and floodplain during the period of record. The present study uses GIS mapping to quantitatively compare historical changes in mapped land and water phenomena in the upper Mississippi River Pool 10, located along southwest Wisconsin's border. Modest channel widening and decreases in island area throughout the study reach during the last century are detectable. Flood magnitudes and frequencies also have varied during this time, and stages and low flow discharges have increased since the 1940s. The latter hydrologic change appears to be closely associated with the reach's geomorphic adjustments. Results are representative of a valley reach where a major tributary contributes a large sand bedload, forming an alluvial fan of considerable size in the floodplain. 相似文献