首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

2.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

3.
In recent decades, public and private environmental entities have been purchasing or leasing water rights across the Western United States (U.S.) in efforts to restore river flows and aquatic ecosystems. The need to pay for flow restoration arises from the fact that state governments did not begin to reserve water for instream purposes until the 1970s, long after water rights had become over‐appropriated and flows were substantially depleted in most rivers. As a consequence, flow depletion has become the leading cause of fish endangerment in the U.S., including the imperilment of two‐thirds of all native fish species in the Colorado River system. This paper takes stock of the progress made in buying water for the environment, specifically by reviewing and analyzing more than 50 transactions executed by public and private entities and the sources of funding underpinning these transactions. We conclude that nongovernmental actors — such as environmental organizations and state water trusts — are integral to regional efforts to restore river flows; these nongovernmental actors executed more than two‐thirds of the transactions we documented. However, we also conclude that the long‐term success of these nongovernmental actors depends upon the availability of sustained public funding that enables them to build capacity and engage in the large number of transactions needed to restore flows across each state.  相似文献   

4.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

5.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   

6.
ABSTRACT: Wise interbasin management of Southeastern U.S. water resources is important for future development. Alabama‐Coosa‐Tallapoosa and Apalachicola‐Flint‐Chattahoochee River basins' water usage has evolved from power generation to multiple uses. Recreation and housing have become increasingly valuable components. Changing use patterns imply changing resource values. This study focused on six Alabama reservoirs, using contingent valuation questions in on‐site, telephone, and mail surveys to estimate impacts on lakefront property values, recreational expenditures, and preservation values for scenarios of permanent changes to reservoir water quantity. As summer full‐pool duration decreased, lakefront property value decreased, and as duration increased, property values increased, but at a lesser rate. Similar findings occurred for winter draw down alternatives. Permanent one‐foot reductions in summer full‐pool water levels resulted in a 4 to 15 percent decrease in lakefront property values. Recreational expenditures decreased 4 to 30 percent for each one‐foot lowering of reservoir water levels. Current nonusers of the six reservoirs showed strong preferences for protecting study reservoirs with willingness to pay values of 47 per household or approximately 29 million for the entire six‐reservoir watershed basin area. Resource management based on historic use patterns may be inappropriate and more frequent and comprehensive valuation of reservoir resources is needed.  相似文献   

7.
ABSTRACT: In early 1997, the Texas Edwards Aquifer Authority implemented a pilot Irrigation Suspension Program with the objectives of increasing springflow and providing relief to municipalities during drought. Irrigators were paid an average of $234 per acre to suspend water use, a price higher than regional land rental rates. Auction theory and program implementation details suggest that the program implementation partially caused inflated bids. The Irrigation Suspension Program is also compared to two alternative programs: (1) subsidizing more efficient irrigation technology and (2) buying land. The irrigation suspension is found to be more cost‐effective relative to subsidizing improved irrigation efficiency because it can be put in place only when aquifer levels are low. Land purchase is a cheaper alternative if the bid levels remain at the levels observed.  相似文献   

8.
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer.  相似文献   

9.
Abstract: For over 10 years, several species of salmon have been identified as either threatened or endangered in the Snake River Basin of Idaho. The United States Bureau of Reclamation, in cooperation with the National Marine Fisheries Service, has proposed a variety of plans to increase stream flows in the Snake River Basin to facilitate movement by juvenile salmon smolts to the ocean. This research examines two of the flow augmentation plans proposed by the Bureau of Reclamation as well as two alternative plans, one founded purely on existing priority‐based water rights and another geared toward minimizing the effects of flow augmentations on farms profitability. Results from a basin‐wide model of agricultural production in the Snake River Basin, the Snake River Agricultural Model, present evidence that (1) older water rights are used towards production of less valuable crops, (2) flow augmentation scenarios have unequal effects on farms profitability across agricultural regions within the basin, and (3) irrigation water is valued from US$4 to US$59 an acre‐foot.  相似文献   

10.
ABSTRACT .A case study was performed to evaluate potential applications of desalted saline water for agriculture using 2 distillation type processes and 2 membrane type processes. The investigation determined the costs and benefits associated with desalting saline water at concentrations of 1,500, 900, 400, 200, and 50 ppm. Benefits from desalting are generated by shifts to more profitable crops, reduced costs for drainage, and reduction in fertilizer and labor requirements with better quality water. Costs are based on the project features such as desalting plants, raw water diversion facilities, storage reservoirs, conveyance and distribution systems, brine disposal, blending facilities, and gypsum addition systems. Hydrologic studies determined the crop irrigation requirements, water demand schedules, desalted water storage requirements, brine disposal requirements, and size of facilities required. Reconnaissance design layouts were made for producing desalted water using a combination of 14 schemes. The study also included a review of irrigation practices. The benefit-cost ratios range from 0.4 to 1.0 for 1,500 ppm irrigation water to 0.8 to 1.0 for 50 and 200 ppm water. Investment costs per acre are high, ranging from $12,900 to $20,900. Irrigation benefits are based on the increase in production from a desert condition with no water supply to the irrigation conditions studied.  相似文献   

11.
ABSTRACT: Factual inputs which may be useful for completing first-order assessments to aid decision-making on the allocation of scarce water resources are compiled. Water needs of major manufacturing industry groups and of minerals industries show wide variations in several measures of water use intensity. The chemicals and allied products and primary metals industries dominate the total water intake and consumptive water use by manufacturing industries. Consumptive use per employee for the petroleum and coal products industry group is nearly 2.5 times higher than that for any other industry group. Estimates of the water requirements per unit energy output for energy-processing systems vary by as much as an order of magnitude. Agricultural water use is larger than that of any other industry but water use for irrigation is not expected to increase significantly by the year 2020. In California, the production of crop calories and proteins per unit of irrigation water applied may vary by more than an order of magnitude. Crops which offer larger monetary returns per acre are irrigated most frequently.  相似文献   

12.
ABSTRACT: Changes in cropping patterns, water use, and profitability of producing sorghum with the LID (Limited Irrigation-Dryland) furrow irrigation system were compared with conventional irrigation practices. A recursive linear programming model was used to assess the economic impacts over a ten-year period. The analysis of various water resource situations in the High Plains of Texas indicated the LID system increased irrigated sorghum acreage over conventional practices. Although less irrigated and dryland wheat was generally produced, present value of returns increased from about $18 per acre to $50 per acre. Water use was slightly higher in most situations when using the LID system.  相似文献   

13.
ABSTRACT: Voluntary water transfers through markets have been advocated by many diverse groups as a means to reallocate scarce water supplies in the semi-arid western U.S. Although transfers of water rights have occurred almost since the creation of prior appropriation laws over a century ago, functioning water markets have been very slow to develop and are few in number. The structure, composition, administration and transactions of one of the most well established water markets, shares in the Bureau of Reclamation, Colorado-Big Thompson project, are examined to better understand the institutional and transfer conditions that sustain an active water market. Results from a detailed study of C-BT project records reveal that between 1970 and 1993 there were 2,698 transactions through which over one-third of the project water changed ownership or type of use. Further analysis shows that the transactions involved many individual sellers and categories of buyers with different uses, including agricultural buyers. The transfer activity and efficiency of the C-BT market has lead some to suggest that it be used as a model for other markets. However, because this market has fewer institutional restrictions, a well developed infrastructure and unique market conditions, it will be difficult to transfer this model to other areas without accompanying modifications in water right administration and institutions.  相似文献   

14.
ABSTRACT Past prices of Colorado-Big Thompson water shares were analyzed using an asset pricing model which incorporated the growth rate in real returns to irrigation water and the value of potential urban water uses. A real growth rate in the returns to irrigation water was estimated at 5.3 percent. Nevertheless, market values for water shares have exceeded capitalized agricultural values since 1969. Historically, urban use potential was heavily discounted, but the implicit discount rate fell rapidly in the last decade. The expectation that water shares will eventually be sold to municipal or industrial consumers now appears to be reflected fully in water prices.  相似文献   

15.
Integrated water resource management (IWRM) requires accounting for many interrelated facets of water systems, water uses and stakeholders, and water management activities. The consequence is that project analysis must account for the nonseparability among the component parts of IWRM plans. This article presents a benefit‐cost (B‐C) analysis of a set of projects included in the Yakima Basin Integrated Plan proposed for the Yakima Basin in south‐central Washington State. The analysis accounts for interdependence among proposed water storage projects and between water storage and water market development in the context of historical and more adverse projected future climate scenarios. Focusing on irrigation benefits from storage, we show that the value of a given proposed storage project is lower when other proposed storage projects in the basin are implemented, and when water markets are functioning effectively. We find that none of the water storage projects satisfy a B‐C criterion, and that assuring proposed instream flow augmentation is less expensive by purchasing senior diversion rights than relying on new storage to provide it.  相似文献   

16.
ABSTRACT: The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the Nation for waste water reuse. Overriding all of these conditions is the long-term inadequacy of the existing water supplies. The Salt River Valley has a ground water overdraft of about 700,000 acre feet per year. To help alleviate this situation, the Corps of Engineers in conjunction with the MAG 208 is looking at ways to reuse a projected 2020 waste water flow of 340,000 acre feet per year. Reuse options identified include ground water recharge, agricultural irrigation, turf irrigation, recreational lakes, fish and wildlife habitats, and industrial cooling. These look nice on paper but before they can be implemented, some hard questions have to be answered, such as: How acceptable are local treatment plants when 15 years ago there was a major push to eliminate local plants; is the Phoenix area ready for reuse in urban areas; what are people willing to pay for water; who benefits if a city goes to ground water recharge; how much agriculture will be left in the area by 2020? These and other questions must be resolved if reuse is to become a viable option in water resource planning in the Phoenix area. Summary. Large scale reuse of waste water conforms with the national goal of better resource management through recycling. The Phoenix metropolitan area has a unique combination of circumstances which makes it one of the prime areas in the nation for waste water reuse. Some of the most notable conditions are: the existence of a large and rapidly growing urban area which is in the process of planning for future waste water management systems; the existence of agricultural areas which are projected to be farmed well into the future, and the existence of constructed and planned major recreational systems such as Indian Bend Wash which can use recycled waste water; the existence of extensive depleted ground water aquifers; the need for a dependable source for the cooling of the Palo Verde Nuclear reactors; and finally, overriding all of this, the long-term inadequacy of the existing water supplies. Given this, one would expect to find total reuse within the Phoenix metropolitan area. Reuse is taking place with irrigation and nuclear power cooling to the west but there is no long term plan which looks at the Valley as a whole and considers waste water as part of the Valley's water resources. The Corps 208 plan is looking at waste water in this manner but initial analysis shows that although reuse is technically feasible there are many financial, social, institutional, and political questions still to be answered. These include: determining the value of existing diminishing water sources and what people are willing to pay for the next source of water; are people willing to identify priority uses of water for the area so that water of varying quality is put to its highest and best use; will the present institutional boundaries remain to create water-rich and water-poor areas; and will legislation be forthcoming to simplify the complex surface and ground water laws that presently exist? The Corps 208 study will not be able to answer these questions, but the goal at the moment is to identify feasible reuse systems along with decisions the public, owners, agencies, and politicians must make to select and implement them. If some sort of logical process is not developed and public awareness not increased, the chance for a long-term plan to utilize waste water as a major element in the Phoenix area water resource picture, may be missed.  相似文献   

17.
ABSTRACT: Water abundance has led most North American societies to use water freely without priorizing its use. As water scarcity becomes reality in the southern part of Saskatchewan, planners and managers of water require information about the value of water in irrigation, as well as in alternative uses. In this study, the value of water to the producer in irrigation is developed both for the short and long run. The basis of this imputation is a derived demand function for water using linear programming. Water demand was bound to be inelastic at lower prices, and highly elastic at higher prices. The short-run value of water varied between $0.44 and $127.82 (1986 dollars) per acre-foot for different levels of product prices. However, the long-run value was estimated between zero and $1.59 per acre-foot of water.  相似文献   

18.
ABSTRACT: Exports from the Sacramento‐San Joaquin Delta are an important source of water for Central Valley and Southern California users. The purpose of this paper is to estimate and analyze the effects increased exports to south of Delta users would have on the Sacramento Valley economy and water management if water were managed and reallocated for purely economic benefits, as if there were an ideal Sacramento Valley water market. Current Delta exports of 6,190 thousand acre‐feet per year were increased incrementally to maximum export pumping plant capacities. Initial increases in Delta exports did not increase regional water scarcity, but decreased surplus Delta flows. Further export increases raised agricultural scarcity. Urban users suffer increased scarcity only for exports exceeding 10,393 taf/yr. Expanding exports raises the economic value of expanding key facilities (such as Engle bright Lake and South Folsom Canal) and the opportunity costs of environmental requirements. The study illustrates the physical and economic capacity of the Sacramento Valley to further increase exports of water to drier parts of the state, even within significant environmental flow restrictions. More generally, the results illustrate the physical capacity for greater economic benefits and flexibility in water management within environmental constraints, given institutional capability to reoperate or reallocate water resources, as implied by water markets.  相似文献   

19.
ABSTRACT: A model is proposed for allocation of water shortages among competing water uses in the Svarta River basin in Sweden. The three major competing uses in the basin are hydroelectricity generation, irrigation water supply, and urban water supply. Minor uses that impact upon the allocation are minimum river flow requirements for fishlife and for dilution of treated wastewater, and storage level restrictions for recreation purposes in the main storage facility, Lake Sommen. Analysis of the competing demands on the water are modeled through the method-of-weights multiobjective technique using a deterministic mixed-integer optimization formulation. The (0–1) variables in the formulation are required to synthesize the restricted validity of permits for withdrawal of irrigation water from the river and to simulate the complex operating rules of the major regulation facility on the river. Due to the deterministic nature of the formulation, the model is used on a hydrologic scenario basis. Use of the model is demonstrated by application to the Svarta River.  相似文献   

20.
ABSTRACT: In areas where water is scarce, drip irrigation provides the most efficient way to conserve irrigation water, but its cost of £1000 an acre is prohibitive for most small farmers in developing countries. The cost was reduced by 90 percent by (1) making dripper lines moveable, so that each line reaches ten rows instead of one; (2) replacing 25-cent emitters with simple 0.70 mm holes punched by a heated needle; and (3) using £3.00 off-the-shelf 20 liter containers with cloth filters in place of expensive filter systems. This reduced the cost of a half-acre system to £50. The low cost system was field tested in the hill areas of Nepal, and in mulberry cultivation in Andhra Pradesh, India. Uniformity of flow from emitters was 73–84 percent. Small farmers reported that the low cost trickle irrigation system cut labor requirements in half, and doubled the area irrigated by the same amount of water. The low cost drip system is likely to be widely adopted by small farmers in semi-arid and hilly regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号