共查询到19条相似文献,搜索用时 15 毫秒
1.
Stephen P. Opsahl Scott E. Chapal David W. Hicks Christopher K. Wheeler 《Journal of the American Water Resources Association》2007,43(5):1132-1141
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined. 相似文献
2.
A. Jason Hill Vincent S. Neary 《Journal of the American Water Resources Association》2007,43(6):1373-1382
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland. 相似文献
3.
Ronald T. Green James R. Winterle James D. Prikryl 《Journal of the American Water Resources Association》2008,44(4):887-901
Abstract: Analysis of results from an electrical resistivity survey, a magnetic survey, and an aquifer test performed on the Leona River floodplain in south‐central Texas indicates that ground‐water discharge from the Edwards Aquifer through the Leona River floodplain may be as great as 91.7 Mm3/year. When combined with an estimate of 8.8 Mm3/year for surface flow in the Leona River, as much as 100.5 Mm3/year could be discharged from the Edwards Aquifer through the Leona River floodplain. A value of 11,200 acre‐ft/year (13.82 Mm3/year) has been used as the calibration target in existing ground‐water models for total discharge from Leona Springs and the Leona River. Including ground water or underflow discharge would significantly increase the calibration target in future models. This refinement would improve the conceptualization of ground‐water flow in the western portion of the San Antonio segment of the Edwards Aquifer and would thereby allow for more accurate assessment and management of the ground‐water resources provided by the Edwards Aquifer. 相似文献
4.
Laura Jean Wilcox Robert S. Bowman Nabil G. Shafike 《Journal of the American Water Resources Association》2007,43(6):1595-1603
Abstract: Previous investigations observed significant seepage losses from the Rio Grande to the shallow aquifer between Socorro and San Antonio, New Mexico. High‐resolution telescopic modeling was used along a 10‐km reach of the Rio Grande and associated drains and canals to evaluate several management alternatives aimed at improving river conveyance efficiency. Observed data consisted of ground‐water and surface‐water elevations, seepage rates along the Rio Grande and associated canals and drains, and borehole geology. Model calibration was achieved by adjusting hydraulic conductivity and specific storage until the output matched observed data. Sensitivity analyses indicated that the system was responsive to changes in hydrogeologic properties, especially when such alterations increased vertical connectivity between layers. The calibrated model predicted that removal of the low flow conveyance channel, a major channel draining the valley, would not only decrease river seepage by 67%, but also decrease total flow through the reach by 75%. The decreased flow through the reach would result in increased water logging and an average increase in ground‐water elevations of 1.21 meter. Simulations of the system with reduced riparian evapotranspiration rates or a relocated river channel also predicted decreased river seepage, but to a much lesser degree. 相似文献
5.
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii. 相似文献
6.
D.Q. Kellogg A.J. Gold P.M. Groffman M.H. Stolt K. Addy 《Journal of the American Water Resources Association》2008,44(4):1024-1034
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions. 相似文献
7.
Abstract: Water levels in the karstic San Andres limestone aquifer of the Roswell Artesian Basin, New Mexico, display significant variations on a variety of time scales. Large seasonal fluctuations in hydraulic head are directly related to the irrigation cycle in the Artesian Basin, lower in summer months and higher in winter when less irrigation occurs. Longer‐term variations are the result of both human and climatic factors. Since the inception of irrigated farming more than a century ago, over‐appropriation of water resources has caused water levels in the artesian aquifer to fall by as much as 70 m. The general decline in hydraulic head began to reverse in the mid‐1980s due to a variety of conservation measures, combined with a period of elevated rainfall toward the end of the 20th Century. 相似文献
8.
9.
Norman L. Miller Larry L. Dale Charles F. Brush Sebastian D. Vicuna Tariq N. Kadir Emin C. Dogrul Francis I. Chung 《Journal of the American Water Resources Association》2009,45(4):857-866
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods. 相似文献
10.
Jianting Zhu Michael H. Young 《Journal of the American Water Resources Association》2009,45(3):641-653
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables. 相似文献
11.
Jonathan T. Angier Gregory W. McCarty 《Journal of the American Water Resources Association》2008,44(2):367-380
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research. 相似文献
12.
Clogging of an Effluent Dominated Semiarid River: A Conceptual Model of Stream‐Aquifer Interactions1
Samantha Treese Thomas Meixner James F. Hogan 《Journal of the American Water Resources Association》2009,45(4):1047-1062
Abstract: Water managers in arid and semiarid regions increasingly view treated wastewater (effluent) as an important water resource. Artificial recharge basins allow effluent to seep into the ground relieving stressed aquifers, however these basins frequently clog due to physical, chemical, and biological processes. Likewise effluent is increasingly used to maintain perennial base flow for dry streambeds, however, little is known about the impact of effluent on streambed hydraulic conductivity and stream‐aquifer interactions. We address this issue by investigating: if a clogging layer forms, how the formation of a clogging layer alters stream‐aquifer connections, and what hydrologic factors control the formation and removal of clogging layers. We focused on the Upper Santa Cruz River, Arizona where effluent from the Nogales International Waste Water Treatment Plant sustains perennial flow. Monthly sampling, along a 30 km river reach, was done with two foci: physical streambed transformations and water source identification using chemical composition. Historical dataset were included to provide a larger context for the work. Results show that localized clogging occurs in the Upper Santa Cruz River. The clogging layers perch the stream and shallow streambed causing desaturation below the streambed. With these results, a conceptual model of clogging is established in the context of a semiarid hydrologic cycle: formation during the hot premonsoon months when flow is nearly constant and removal by large flood flows (>10 m3/s) during the monsoon season. However, if the intensity of flooding during the semiarid hydrologic cycle is lessened, the dependent riparian area can experience a die off. This conceptual model leads us to the conclusion that effluent dominated riparian systems are inherently unstable due to the clogging process. Further understanding of this process could lead to improved ecosystem restoration and management. 相似文献
13.
Alan Mair Ali Fares Aly El‐Kadi 《Journal of the American Water Resources Association》2007,43(1):148-159
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow. 相似文献
14.
Gary S. Johnson Bryce A. Contor Donna M. Cosgrove 《Journal of the American Water Resources Association》2008,44(1):27-36
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden. 相似文献
15.
R.L. Johnson B.R. Clark M.K. Landon L.J. Kauffman S.M. Eberts 《Journal of the American Water Resources Association》2011,47(3):588-596
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well. 相似文献
16.
Aaron R. Mittelstet Michael D. Smolen Garey A. Fox Damian C. Adams 《Journal of the American Water Resources Association》2011,47(2):424-431
Mittelstet, Aaron R., Michael D. Smolen, Garey A. Fox, and Damian C. Adams, 2011. Comparison of Aquifer Sustainability Under Groundwater Administrations in Oklahoma and Texas. Journal of the American Water Resources Association (JAWRA) 1‐8. DOI: 10.1111/j.1752‐1688.2011.00524.x Abstract: We compared two approaches to administration of groundwater law on a hydrologic model of the North Canadian River, an alluvial aquifer in northwestern Oklahoma. Oklahoma limits pumping rates to retain 50% aquifer saturated thickness after 20 years of groundwater use. The Texas Panhandle Groundwater Conservation District’s (GCD) rules limit pumping to a rate that consumes no more than 50% of saturated thickness in 50 years, with reevaluation and readjustment of permits every 5 years. Using a hydrologic model (MODFLOW), we simulated river‐groundwater interaction and aquifer dynamics under increasing levels of “development” (i.e., increasing groundwater withdrawals). Oklahoma’s approach initially would limit groundwater extraction more than the GCD approach, but the GCD approach would be more protective in the long run. Under Oklahoma rules more than half of aquifer storage would be depleted when development reaches 65%. Reevaluation of permits under the Texas Panhandle GCD approach would severely limit pumping as the 50% level is approached. Both Oklahoma and Texas Panhandle GCD approaches would deplete alluvial base flow at approximately 10% development. Results suggest periodic review of permits could protect aquifer storage and river base flow. Modeling total aquifer storage is more sensitive to recharge rate and aquifer hydraulic conductivity than to specific yield, while river leakage is most sensitive to aquifer hydraulic conductivity followed by specific yield. 相似文献
17.
James Androwski Abraham Springer Thomas Acker Mark Manone 《Journal of the American Water Resources Association》2011,47(1):93-102
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater. 相似文献
18.
Abstract: Apparent ground‐water ages as determined by the noble gas isotope 85Kr and the water isotope 3H are compared. Refined gas extraction methodology at the wellhead permits efficient collection of Kr for 85Kr isotope enrichment. 85Kr isochrones elucidate areas of much younger ground‐water ages than 3H. Declining 3H activities in the catchment prevent its correlation with the youngest measured 85Kr ages. Source water for most drinking water supplies in the Collyer River catchment is recharged within 40 years BP (2004). Mean‐age (τ) transport modeling suggests uncertainty of ground‐water ages is greatest in the central basin area. 相似文献
19.
Ferdi L. Hellweger Petr Masopust 《Journal of the American Water Resources Association》2008,44(2):509-522
Abstract: The processes affecting the fate and transport of Escherichia coli in surface waters were investigated using high‐resolution observation and modeling. The concentration patterns in Boston’s Charles River were observed during four sampling events with a total of 757 samples, including two spatial surveys with two along‐river (1,500 m length) and three across‐river (600 m length) transects at approximately 25‐m intervals, and two temporal surveys at a fixed location (Community Boating) over seven days at hourly intervals. The data reveal significant spatial and temporal structure at scales not resolved by typical monitoring programs. A mechanistic, time‐variable, three‐dimensional coupled hydrodynamic and water quality model was developed using the ECOMSED and RCA modeling frameworks. The computational grid consists of 3,066 grid cells with average length dimension of 25 m. Forcing functions include upstream and downstream boundary conditions, Stony Brook, and Muddy River (major tributaries) combined sewer overflow (CSO) and non‐CSO discharge and wind. The model generally reproduces the observed spatial and temporal patterns. This includes the presence and absence of a plume in the study area under similar loading, but different hydrodynamic conditions caused by operation of the New Charles River Dam (downstream) and wind. The model also correctly predicts an episode of high concentrations at the time‐series station following seven days of no rainfall. The model has an overall root mean square error (RMSE) of 250 CFU/100 ml and an error rate (above or below the USEPA‐recommended single sample criteria value of 235 CFU/100 ml) of 9.4%. At the time series station, the model has an RMSE of 370 CFU/100 ml and an error rate of 15%. 相似文献