首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
ABSTRACT: In areas of the Red River Valley that overlie permeable Paleozoic sediments, wetlands and salinization have developed where unregulated flowing wells discharge brackish water. Field data were collected to assess the fate of water and salt from a well 25 km northwest of Grand Forks. Drilled during the drought of the 1930s, discharge was used to replenish water in a small oxbow pond used by livestock. The unregulated well discharges about 56 m3/day, measured since 1993. This discharge exceeds ground water flow from the site, thereby forming a ground water mound with a maximum height of 1 m and a diameter of about 300 m. Most soil and underlying sediments near the well have a hydraulic conductivity of 0.3 m3/day. Flow net analysis suggests that less than 25 percent infiltrates, with the remaining water lost to surface flow and evapotranspiration (ET). Evapotranspiration and slow infiltration has led to increased salinization, with shallow soils exhibiting EC to 500 milliSiemens/m. The most pronounced soil salinization occurs along the margins of the oxbow pond and meander scars. Wetland vegetation with low diversity comprises three zones, with species associations similar to those of closed basin prairie potholes to the west.  相似文献   

2.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

3.
ABSTRACT: Yearly runoff efficiencies (total runoff/total precipitation), threshold retentions (precipitation needed to initiate runoff), and runoff-efficiencies-after-thresholds were determined for several water-harvesting catchment treatments at the Granite Reef test site. This information was found to be useful for showing (1) overall performance of catchments with time; (2) the distribution of the precipitation among runoff, surface retention, and infiltration; (3) why, how, and when certain treatments weathered and failed; (4) when to repair treatments; and (5) how to design catchments (size, site preparation, material selection, etc.). New impermeable membranes with smooth surfaces yielded nearly 100% of the precipitation. An asphalt-fiberglass treatment continues this high efficiency after 10 years of weathering – polyethylene after 8; efficiency of butyl sheeting was high initially but decreased rapidly after 9 years weathering. A standard roofing treatment retained up to 30% of the precipitation in the gravel covering. A concrete catchment lost as much as 50% of the total precipitation through micropores and surface cracks. Silicone treatments rapidly lost repellancy and efficiency, while paraffin treatments have weathered 5 years with little loss of efficiency.  相似文献   

4.
ABSTRACT: The processing of waste from confined animal feeding operations (CAFOs) presents a major environmental challenge. Treatment of waste and subsequent land application is a common best management practice (BMP) for these operations in Kentucky, USA, but there are few data assessing the effect of runoff from such operations on aquatic communities. The authors sampled a stream bordering a CAFO with a land application program to determine if runoff from the fertilized fields was adversely affecting stream communities. Water chemistry, periphyton, and macroinvertebrate samples from riffle habitats downstream of the CAFO were compared to samples collected from an upstream site and a control stream in 1999 and 2000. Riffle communities downstream of the fertilized fields had higher chlorophyll a levels than other sites, but there were no significant differences in macroinvertebrate numbers or in biometrics such as taxa richness among the sites. The BMP in place at this site may be effective in reducing this CAFO's impact on the stream; however, similar assessments at other CAFO sites should be done to assess their impacts. Functional measures such as nutrient retention and litter decomposition of streams impacted by CAFOs should also be investigated to ensure that these operations are not adversely affecting stream communities.  相似文献   

5.
The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m3) of cement and a density of 1,300 kg/m3. The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples (p‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm2). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.  相似文献   

6.
ABSTRACT: Two water‐quality studies were done on the outskirts of the Detroit metropolitan area to determine how recent residential development has affected ground‐water quality. Pairs of monitor and domestic wells were sampled in areas where residential land use overlies glacial outwash deposits. Young, shallow waters had significantly higher median concentrations of nitrate, chloride, and dissolved solids than older, deeper waters. Analysis of chloride/bromide ratios indicates that elevated salinities are due to human activities rather than natural factors, such as upward migration of brine. Trace concentrations of volatile organic compounds were detected in samples from 97 percent of the monitor wells. Pesticides were detected infrequently even though they are routinely applied to lawns and roadways in the study area. The greatest influence on ground‐water quality appears to be from septic‐system effluent (domestic sewage, household solvents, water‐softener backwash) and infiltration of storm‐water runoff from paved surfaces (road salt, fuel residue). No health‐related drinking‐water standards were exceeded in samples from domestic wells. However, the effects of human activities are apparent in 76 percent of young waters, and at depths far below 25 feet, which is the current minimum well‐depth requirement.  相似文献   

7.
8.
Direct ground water seepage measurements were made in Lake Washington, Florida, to determine the importance of seepage as a water and chloride source to the lake and upper St. Johns River. Over 200 seepage measurements were made in the lake and adjoining canals from July through December 1978. Results indicated that seepage into the shore areas of Lake Washington was an insignificant water source to the lake, representing 0.6 percent of the inputs, and was nearly balanced by ground water recharge in the midlake region. Drainage canals entering Lake Washington, however, exhibited high average seepage rates (17.7 L/m2-day), over eight times the lake average (2.01 L/M2-day). Discharge from the St. Johns River was the dominant factor in the water budget of Lake Washington and represented approximately 88 percent of the inputs during the study year. Although inputs from the drainage canals represented only 6.6 percent of the St. Johns River annual discharge, these canals represented 20.4 percent of the annual St. Johns River chloride loading and 62.1 percent of the river chloride loading during the five driest months of 1978. Evidence from this study indicates that rising levels of chloride in the river in recent years are largely attributable to ground water seepage in channelized areas, particularly in the headwaters. These chloride inputs assume greater importance during low water/low flow periods.  相似文献   

9.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   

10.
Precipitation and runoff samples were collected for 13 storms in a nonindustrial urban area in Central Pennsylvania between July 1980 and June 1981. Runoff was collected from tree surfaces, a residential roof and street, a shopping mall parking lot, a downtown business district alley, and a heavily traveled street. Analysis of the water samples showed 10 to 25 percent of the nitrogen, 25 percent of the sulfate, and less than 5 percent of the phosphorus, potassium, and calcium in water below a tree was deposited by the precipitation. The residential roof caused insignificant changes in water chemistry. The results for the four paved areas showed that all the nitrogen, and from 16 to 40 percent of the sulfate and 13, 4, and 2 percent of the phosphorus, potassium, and calcium, respectively, in runoff was deposited by the precipitation. Precipitation can also be an important source of sulfate and phosphorus in runoff. All of the surfaces raised the pH of the runoff, with the largest increases, from a pH of 4 to about 7, occurring in runoff from the paved areas. Precipitation and runoff chemistry was not related to antecedent conditions such as the length of the preceding dry period.  相似文献   

11.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

12.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

13.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

14.
ABSTRACT: Water quality controls of storm water runoff and infiltration should be a major part of a nonpoint source control program. Although surface runoff and ground water controls are often approached separately, coordination between the two is essential. For practical reasons, a rather simplified technology-based approach appears to be desirable. Areas affected vary greatly as to their sensitivity to pollution; and the various classes of pollutant source vary greatly as to their potential harmfulness. In effect, a matrix approach appears best, in which both vulnerability of the area and harmfulness of the pollutant source would have weight in determining which level of best management practices (BMP) would be appropriate, whether standard, special, or complete prohibition of the type facility under given circumstances.  相似文献   

15.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

16.
Few studies exist on how chloride from chloride‐based deicers is transported in infiltration‐based stormwater control measures. In 2009, the U.S. Environmental Protection Agency (USEPA) constructed a 0.4 ha parking lot in Edison, New Jersey, that was surfaced with permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each surface type has four equally sized, lined sections that direct all infiltrate to separate 5.7 m3 collection tanks. The USEPA acute criterion for aquatic life (860 mg/l) was exceeded in events immediately following a snow event. Concentrations of the infiltrate exceeded the detection limit (5 mg/l) year round but did not exceed the USEPA chronic toxicity (230 mg/l) after April. The chloride concentration decreased with cumulative rainfall since previous snow event, and a power regression described this relationship. In the power regression, the coefficient (b) described the initial concentration following a snow event, and the exponent (m) described the rate in which chloride was flushed through the system with infiltrating water. PC had the largest coefficient (5,664) and largest absolute exponent (?0.92), followed closely by PICP (= 4,943 and = ?0.87), and distantly by PA (= 2,907 and = ?0.67). The differences in release rate were proportional to the measured surface infiltration rates of 4,000; 2,400; and 200 cm/h for PC, PICP, and PA, respectively. These results will assist those who manage or regulate stormwater where receiving waters are chloride impaired.  相似文献   

17.
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.  相似文献   

18.
ABSTRACT: Development type has emerged as an important focal point for addressing a wide range of social, cultural, and environmental concerns related to urban growth. Low impact development techniques that rely heavily on infiltration practices are increasingly being used to manage storm water. In this study, four development types (conventional curvilinear, urban cluster, coving, and new urbanism) were modeled both with and without infiltration practices to determine their relative effects on urban runoff. Modeling was performed with a modified version of the Natural Resources Conservation Service (NRCS) runoff method that enables evaluation of infiltration practices. Model results indicate that urban cluster developments produce the smallest volume of runoff due to the large portion of land kept in a natural condition. Infiltration practices are most effective for small storms and in developments with Hydrologic Group A soils. Significant reductions in runoff can be achieved in all four development types if infiltration practices treat many impervious surfaces. As more infiltration practices are implemented, the differences in runoff among development types diminish. With a strategic combination of site layout and infiltration design, any development type can reduce hydrologic impacts, allowing developers to consider other factors, such as convenience, marketability, community needs, and aesthetics.  相似文献   

19.
The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.  相似文献   

20.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号