首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The authors present a model that generates streamflow for ephemeral arid streams. The model consists of a stochastic hourly precipitation point process model and a conceptual model that transforms precipitation into flow. It was applied to the Santa Cruz River at the border crossing from Mexico into Southern Arizona. The model was constructed for four different seasons and three categories of inter‐annual variability for the wet seasons of summer and winter. The drainage area is ungauged and precipitation information was inferred from a precipitation gauge downstream. The precipitation gauge record was evaluated against simulated precipitation from a mesoscale numerical weather prediction model, and was found to be the representative of the regional precipitation variability. The flow generation was found to reproduce the variability in the observed record at the daily, seasonal and annual time scales, and it is suitable for use in planning studies for the study site.  相似文献   

2.
Dai, Zhaohua, Carl C. Trettin, Changsheng Li, Devendra M. Amatya, Ge Sun, and Harbin Li, 2010. Sensitivity of Streamflow and Water Table Depth to Potential Climatic Variability in a Coastal Forested Watershed. Journal of the American Water Resources Association (JAWRA) 1–13. DOI: 10.1111/j.1752-1688.2010.00474.x Abstract: A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for predicting the streamflow and water table dynamics for this watershed with an acceptable model efficiency (E > 0.5 for daily streamflow and >0.75 for monthly streamflow). The simulation results from changing temperature and precipitation scenarios indicate that climate change influences both streamflow and water table in the forested watershed. Compared to current climate conditions, the annual average streamflow increased or decreased by 2.4% with one percentage increase or decrease in precipitation; a quadratic polynomial relationship between changes in water table depth (cm) and precipitation (%) was found. The annual average water table depth and annual average streamflow linearly decreased with an increase in temperature within the range of temperature change scenarios (0-6°C). The simulation results from the potential climate change scenarios indicate that future climate change will substantially impact the hydrological regime of upland and wetland forests on the coastal plain with corresponding implications to altered ecosystem functions that are dependent on water.  相似文献   

3.
ABSTRACT: The Nebraska Sand Hills have a unique hydrologic system with very little runoff and thick aquifers that constantly supply water to rivers, lakes, and wetlands. A ground water flow model was developed to determine the interactions between ground water and streamflow and to simulate the changes in ground water systems by reduced precipitation. The numerical modeling method includes a water balance model for the vadose zone and MOD‐FLOW for the saturated zone. The modeling results indicated that, between 1979 and 1990, 13 percent of the annual precipitation recharged to the aquifer and annual ground water loss by evapotranspiration (ET) was only about one‐fourth of this recharge. Ground water discharge to rivers accounts for about 96 percent of the streamflow in the Dismal and Middle Loup rivers. When precipitation decreased by half the average amount of the 1979 to 1990 period, the average decline of water table over the study area was 0.89 m, and the streamflow was about 87 percent of the present rate. This decline of the water table results in significant reductions in ET directly from ground water and so a significant portion of the streamflow is maintained by capture of the salvaged ET.  相似文献   

4.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

5.
ABSTRACT: A regional water conservation system for drought management involves many uncertain factors. Water received from precipitation may stay on the ground surface, evaporate back into the atmosphere, or infiltrate into the ground. Reliable estimates of the amount of evapotranspiration and infiltration are not available for a large basin, especially during periods of drought. By applying a geographic information system, this study develops procedures to investigate spatial variations of unavailable water for given levels of drought severity. Levels of drought severity are defined by truncated values of monthly precipitation and daily streamflow to reflect levels of water availability. The greater the truncation level, the lower the precipitation or streamflow. Truncation levels of monthly precipitation are recorded in depth of water while those of daily streamflow are converted into monthly equivalent water depths. Truncation levels of precipitation and streamflow treated as regionalized variables are spatially interpolated by the unbiased minimum variance estimation. The interpolated results are vector values of precipitation and streamflow at a grid of points covering the studied basin. They are then converted into raster‐based values and expressed graphically. The image subtraction operation is used to subtract the image of streamflow from that of precipitation at their corresponding level of drought severity. It is done on a cell‐by‐cell basis resulting in new attribute values to form the spatial image representing a spatial distribution of potential water loss at a given level of drought severity.  相似文献   

6.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

7.
Abstract: A parametric regression model was developed for assessing the variability and long‐term trends in pesticide concentrations in streams. The dependent variable is the logarithm of pesticide concentration and the explanatory variables are a seasonal wave, which represents the seasonal variability of concentration in response to seasonal application rates; a streamflow anomaly, which is the deviation of concurrent daily streamflow from average conditions for the previous 30 days; and a trend, which represents long‐term (inter‐annual) changes in concentration. Application of the model to selected herbicides and insecticides in four diverse streams indicated the model is robust with respect to pesticide type, stream location, and the degree of censoring (proportion of nondetections). An automatic model fitting and selection procedure for the seasonal wave and trend components was found to perform well for the datasets analyzed. Artificial censoring scenarios were used in a Monte Carlo simulation analysis to show that the fitted trends were unbiased and the approximate p‐values were accurate for as few as 10 uncensored concentrations during a three‐year period, assuming a sampling frequency of 15 samples per year. Trend estimates for the full model were compared with a model without the streamflow anomaly and a model in which the seasonality was modeled using standard trigonometric functions, rather than seasonal application rates. Exclusion of the streamflow anomaly resulted in substantial increases in the mean‐squared error and decreases in power for detecting trends. Incorrectly modeling the seasonal structure of the concentration data resulted in substantial estimation bias and moderate increases in mean‐squared error and decreases in power.  相似文献   

8.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

9.
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks.  相似文献   

10.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

11.
Tobin, Kenneth J. and Marvin E. Bennett, 2012. Validation of Satellite Precipitation Adjustment Methodology From Seven Basins in the Continental United States. Journal of the American Water Resources Association (JAWRA) 48(2): 221‐234. DOI: 10.1111/j.1752‐1688.2011.00604.x Abstract: The precipitation science community has expressed concern regarding the ability of satellite‐based precipitation products to accurately capture rainfall values over land. There has been some work that has focused on addressing the deficiencies of satellite precipitation products, particularly on the adjustment of bias. This article outlines a methodology that adjusts satellite products utilizing ground‐based precipitation data. The approach is not a simple bias adjustment, but is a three‐step process that transforms a satellite product based on a ground‐based precipitation product (NEXRAD‐derived Multisensor Precipitation Estimator [MPE] product or rain‐gauge data). The developed methodology was successfully applied to seven moderate‐to‐large sized watersheds from continental United States (CONUS) and northern Mexico over a spectrum of climatic regimes ranging from dry to humid settings. Methodology validation is based on comparison of observed and simulated streamflow generated with SWAT (Soil and Water Assessment Tool) model using unadjusted and adjusted precipitation products as input. Streamflow comparison is based on mass balance error and Nash‐Sutcliffe efficiency coefficient. Finally, the contribution of how adjustment to correct misses, false alarms, and bias impacts adjusted datasets and the potential impact that the adjustment methodology can have on hydrological applications such as water resource monitoring and flood prediction are explored.  相似文献   

12.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model was used to assess the effects of potential future climate change on the hydrology of the Upper Mississippi River Basin (UMRB). Calibration and validation of SWAT were performed using monthly stream flows for 1968–1987 and 1988–1997, respectively. The R2 and Nash‐Sutcliffe simulation efficiency values computed for the monthly comparisons were 0.74 and 0.69 for the calibration period and 0.82 and 0.81 for the validation period. The effects of nine 30‐year (1968 to 1997) sensitivity runs and six climate change scenarios were then analyzed, relative to a scenario baseline. A doubling of atmospheric CO2 to 660 ppmv (while holding other climate variables constant) resulted in a 36 percent increase in average annual streamflow while average annual flow changes of ?49, ?26, 28, and 58 percent were predicted for precipitation change scenarios of ?20, ?10, 10, and 20 percent, respectively. Mean annual streamflow changes of 51,10, 2, ?6, 38, and 27 percent were predicted by SWAT in response to climate change projections generated from the CISRO‐RegCM2, CCC, CCSR, CISRO‐Mk2, GFDL, and HadCMS general circulation model scenarios. High seasonal variability was also predicted within individual climate change scenarios and large variability was indicated between scenarios within specific months. Overall, the climate change scenarios reveal a large degree of uncertainty in current climate change forecasts for the region. The results also indicate that the simulated UMRB hydrology is very sensitive to current forecasted future climate changes.  相似文献   

13.
ABSTRACT: The potential impacts of climate change on water yield are examined in the Upper Wind River Basin. This is a high‐elevation, mountain basin with a snowfall/snowmelt dominated stream‐flow hydrograph. A variety of physiographic conditions are represented in the rangeland, coniferous forests, and high‐elevation alpine regions. The Soil Water Assessment Tool (SWAT) is used to model the baseline input time series data and climate change scenarios. Five hydroclimatic variables (temperature, precipitation, CO2, radiation, and humidity) are examined using sensitivity tests of individual and coupled variables with a constant change and coupled variables with a monthly change. Results indicate that the most influential variable on annual water yield is precipitation; and, the most influential variable on the timing of streamflow is temperature. Carbon dioxide, radiation, and humidity each noticeably impact water yield, but less significantly. The coupled variable analyses represent a more realistic climate change regime and reflect the combined response of the basin to each variable; for example, increased temperature offsets the effects of increased precipitation and magnifies the effects of decreased precipitation. This paper shows that the hydrologic response to climate change depends largely on the hydroclimatic variables examined and that each variable has a unique effect (e.g., magnitude, timing) on water yield.  相似文献   

14.
ABSTRACT: Karst terrane provides a linkage between surface water and ground water regimes by means of caves, sinkholes and swallets, and sinking streams, and facilitates the inter‐watershed transfer of water and contaminants through these subsurface systems. The goal of this study was to develop procedures to identify the sources of degradation of a creek situated in a complex karst‐water system. The study approach consisted of using dye tracing technique to determine subsurface flow paths through the karst system, a water‐sampling network to identify and characterize pollution sources within the surface watershed and subsurface flow regime, and evaluation of analytical data for several water quality parameters. The results of this study provide an interesting perspective of water and contaminant movement in karst‐water systems and pinpoint the sources of stream contamination for a case study site in southwest Virginia where two springs supply water to a contaminated freshwater stream.  相似文献   

15.
Droughts constitute one of the most important factors affecting the design and operation of water resources infrastructure. Hydrologists ascertain their duration, severity, and pattern of recurrence from instrumental records of precipitation or stream‐flow. Under suitable conditions, and with proper analysis, tree rings obtained from long living, climate sensitive species of trees can extend instrumental records of streamflow and precipitation over periods spanning several centuries. Those tree‐ring “reconstructions” provide a valuable insight about climate variability and drought occurrence in the Holocene, and yield long term hydrological data useful in the design of water infrastructure. This work presents a derivation of drought risk based on a renewal model of drought recurrence, a brief review of the basic theory of tree‐ring reconstructions, and a stochastic model for optimizing the design of water supply reservoirs. Examples illustrate the methodology developed in this work and the supporting role that tree‐ring reconstructed streamflow can play in characterizing hydrologic variability.  相似文献   

16.
Spatially disaggregated estimates of over 131 stream‐flow, ground water, and reservoir evaporation monthly time series in California have been created for 12 different climate warming scenarios for a 72‐year period. Such disaggregated hydrologic estimates of multiple hydrologic cycle components are important for impact and adaptation studies of California's water system. A statewide trend of increased winter and spring runoff and decreased summer runoff is identified. Without operations modeling, approximate changes in water availability are estimated for each scenario. Even most scenarios with increased precipitation result in less available water because of the current storage systems' inability to catch increased winter streamflow in compensation for reduced summer runoff. The water availability changes are then compared with estimated changes in urban and agricultural water uses in California between now and 2100. The methods used in this study are relatively simple, but the results are qualitatively consistent with other studies focusing on the hydrologies of single basins or surface water alone.  相似文献   

17.
ABSTRACT: This paper presents hydrological characteristics of the streamflow of the Dismal, Middle Loup, North Loup, and Cedar Rivers in the Nebraska Sand Hills and their relation to climate and ground water variation. Time series of streamflow, precipitation, temperature, and ground water levels from 1976 to 1998 were used to analyze trends and fluctuations of streamflow and to determine relationships among streamflow, climate, and the ground water system. An increase of precipitation and a decrease of maximum temperature over the period resulted in higher ground water levels and increased streamflow in the region. The high permeability of the soil and the thick unsaturated zone enhance precipitation recharge, limit surface runoff, and prevent ground water losses through evapotranspiration. Thus, an abundance of ground water is stored, supplying more than 86 percent of streamflow in the four rivers. Streamflow is generally more constant in the Sand Hills than elsewhere in the region. The four rivers present different hydrologic characteristics because of the spatial heterogeneity in hydrogeologic conditions. Streamflow of the Dismal and Middle Rivers, which are less sensitive to climatic variation, is much steadier than that of the North Loup and Cedar Rivers.  相似文献   

18.
ABSTRACT: Although the effects of vegetation management on streamflow have been studied in many locations, the effects of augmented streamflow on downstream water users have not been carefully analyzed. This study examines the routing of streamflow increases that could be produced in the Verde River Basin of Arizona. Reservoir management and water routing to users in the Salt River Valley around Phoenix were carefully modeled. Simulation of water routing with and without vegetation modification indicates that, under current institutional conditions, less than one-half of the streamflow increase would reach consumptive users as surface water. Most of the remainder would accumulate in storage until a year of unusually heavy runoff, when it would add to reservoir spills. Under alternative scenarios, from 39 to 58 percent of the streamflow increase was delivered to consumptive users.  相似文献   

19.
ABSTRACT: The term flashiness reflects the frequency and rapidity of short term changes in streamflow, especially during runoff events. Flashiness is an important component of a stream's hydrologic regime. A variety of land use and land management changes may lead to increased or decreased flashiness, often to the detriment of aquatic life. This paper presents a newly developed flashiness index, which is based on mean daily flows. The index is calculated by dividing the pathlength of flow oscillations for a time interval (i.e., the sum of the absolute values of day‐to‐day changes in mean daily flow) by total discharge during that time interval. This index has low interannual variability, relative to most flow regime indicators, and thus greater power to detect trends. Index values were calculated for 515 Midwestern streams for the 27‐year period from 1975 through 2001. Statistically significant increases were present in 22 percent of the streams, primarily in the eastern portion of the study area, while decreases were present in 9 percent, primarily in the western portion. Index values tend to decrease with increasing watershed area and with increasing unit area ground water inputs. Area compensated index values often shift at ecoregion boundaries. Potential index applications include evaluation of programs to restore more natural flow regimes.  相似文献   

20.
ABSTRACT: The value of using climate indices such as ENSO or PDO in water resources predictions is dependent on understanding the local relationship between these indices and streamflow over time. This study identifies long term seasonal and spatial variations in the strength of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) correlations with timing and magnitude of discharge in snowmelt streams in Oregon. ENSO is best correlated with variability in annual discharge, and PDO is best correlated with spring snowmelt timing and magnitude and timing of annual floods. Streams in the Cascades and Wallowa mountains show the strongest correlations, while the southernmost stream is not correlated with ENSO or PDO. ENSO correlations are weaker from 1920 to 1950 and vary significantly depending on whether Southern Oscillation Index (SOI) or Niño 3.4 is used. PDO correlations are strong from 1920 to 1950 and weak or insignificant other years. Although there are not consistent increasing or decreasing trends in annual discharge or spring snowmelt timing, there are significant increases in fractional winter runoff that are independent of precipitation, PDO, or ENSO and may indicate monotonic winter warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号