共查询到17条相似文献,搜索用时 77 毫秒
1.
乌海市是我国典型的煤焦化工业基地,大气污染物排放总量较大且近年来夏季O3污染问题逐渐突出,明确大气污染物排放特征,探究O3污染形成机制是客观认识其O3污染现状,科学制定污染控制措施的基础.基于"系数法"采用自下而上的方式构建了2018年乌海市高分辨率大气污染源排放清单(HEI-WH18),利用WRF-Chem对HEI-WH18的适用性和准确性进行评估,并结合模式诊断模块探究了乌海市夏季O3污染形成的原因.排放清单结果表明,2018年乌海市SO2、NOx、CO、PM10、PM2.5、VOCs、NH3、BC和OC的排放总量分别为65943、40934、172867、159771、47469、69191、1407、1491和1648 t ·a-1.与MEIC清单相比,利用HEI-WH18能更好地捕捉到O3及其前体物的排放变化规律和量级,适用于乌海市夏季O3的模拟及其来源分析研究.从O3及前体物的空间分布来看,乌海市海勃湾城区白天为O3高值区,3个工业园区无论白天和夜间均为O3低值区和NO2高值区,CO的空间分布特征与煤层及矸石堆自燃源一致.根据对O3污染过程的诊断分析,边界层中高层O3浓度的升高主要是平流输送和化学过程共同作用的结果,低层O3浓度的升高是垂直混合和平流输送导致的,化学过程在低层的贡献较为复杂,其正贡献起到了维持高O3浓度的作用,负贡献结合平流输送造成了O3污染的最终消散. 相似文献
2.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主... 相似文献
3.
对流层臭氧(O3)主要由氮氧化物(NOx)和挥发性有机物(VOCs)经过一系列光化学反应生成,反应过程呈现复杂的非线性关系.为深入了解O3的光化学特征及生成机制,利用2018年夏季大气O3与VOCs的观测数据,结合大气零维框架模拟模型F0AM-MCM,研究O3超标日和非O3超标日的O3光化学特征之间的差异性.观测结果表明,O3超标日期间φ(O3)和φ(TVOCs)的平均值分别为47.8×10-9和49.0×10-9,为非O3超标日期间O3(26×10-9)和TVOCs(30×10-9)体积分数的1.8倍和1.6倍.使用F0AM模型,借助EKMA曲线和RIR分析等识别O3敏感性,发现南京市O3超标日和非O3超标日O3的形成均主要受VOCs和NOx的协同控制.F0AM-MCM模拟结果表明,在O3超标日,·OH和HO2的日平均混合比分别是非O3超标日的1.3倍和1.8倍,表明O3超标日期间具有更强的大气氧化能力,且·OH和HO2的形成和损失速率也有明显的增加,表明自由基循环的增强.此外,O3超标日的O3生成速率明显高于非O3超标日,从而导致了O3超标日的O3净生成速率明显高于非O3超标日.以上发现提高了对南京夏季O3超标日大气O3光化学特征的认识. 相似文献
4.
为探究我国西北城市地区臭氧(O3)生成机制及减排策略,2021年夏季在伊宁市开展环境大气加强观测,基于0-D盒子模型(采用MCMv3.3.1化学机制)分析伊宁市大气O3生成机制并初步探究大气O3生成敏感性.结果表明:①由O3生成潜势(OFP)、·OH反应速率(k·OH)和相对增量反应活性(RIR)这3个指标共同分析可知,烯烃、含氧挥发性有机物(OVOCs)和芳香烃是影响O3生成的关键人为源挥发性有机物(AVOC)组分,且生物源挥发性有机物(BVOC)对O3的生成贡献也不容忽视.基于RIR分析发现优控VOCs物种主要为乙醛、乙烯和丙烯等;②由盒子模型模拟可知,伊宁市O3受到本地光化学生成和区域输出作用共同影响,且HO2·+NO和·OH+NO2反应途径分别对本地O3光化学生成和去除贡献最大;③基于RIR(NOx)/RIR(AVOC)和EKMA共同表明,伊宁市夏季O3生成主要处于过渡区且靠近VOCs控制区.不同削减情景模拟表明,AVOC和NOx协同减排能有效降低当地O3体积分数,其中AVOC减排效果更为明显.研究结果可为西北区域类似城市大气O3污染管控提供支持. 相似文献
5.
南京地区一次臭氧污染过程的行业排放贡献研究 总被引:1,自引:0,他引:1
采用WRF-CHEM模式对南京地区春季一次臭氧(O_3)污染过程进行了模拟及行业排放贡献分析.此次O_3污染过程发生在2015年5月22—26日,南京地区一直处于地面高压控制的晴好天气之下,并于25日达到O_3污染的峰值.模拟与观测的一致性指数IOA达到0.89,表征本次O_3污染过程的模拟与观测结果的一致性较高.通过5类排放源(工业源、农业源、居住源、交通源、生物源)的敏感性试验,探究各行业排放源中O_3前体物对近地面O_3浓度的相对贡献.结果表明工业源在白天为持续正贡献,且在午后16:00时达到峰值,而交通源、居住源和农业源的贡献随气温的升高在白天由负贡献转为正贡献,并在18:00时左右达到峰值.在夜晚,O_3则主要通过交通源排放的大量NO进行滴定消耗.在高O_3浓度(≥200μg·m~(-3))时,各人为排放源均为正贡献,工业源的贡献最大,达到50μg·m~(-3),在低O_3浓度(200μg·m~(-3))时,交通源、居住源和农业源呈负贡献.生物源在人为排放源主导的南京城区O_3污染过程中的贡献几乎为零.考虑到O_3生成机制的复杂性,对于南京地区,减少工业源排放是控制O_3污染的关键. 相似文献
6.
安徽省O3浓度时空分异及其驱动因素研究 总被引:1,自引:0,他引:1
基于2017—2018年安徽省132个空气质量监测站点的O3浓度观测数据及各月份的气象与前体物排放数据, 采用空间自相关分析、地理探测器等方法分析安徽O3浓度的时空分异及其驱动因素. 结果表明:安徽O3浓度的峰值出现在5月和6月, 超标率分别为31.4%和42.8%. O3浓度整体呈空间集聚特征, 高值区主要出现在安徽东北部的蚌埠、宿州、淮南和滁州4市, 低值主要分布在皖南山区. 气象要素是安徽省O3浓度格局形成的主控因素, 其中6月的边界层高度(q=0.644)、近地面太阳辐射(q=0.597)和风速(q=0.571)的影响最大, 且呈正向影响, 风速的增大和边界层高度的增加可能使得输入性污染增加. 降雨量(q=-0.532)和相对湿度(q=-0.559)呈负向影响, 且降雨带的移动是影响安徽夏季O3分布格局的一项关键因素. 本地前体物排放对安徽O3浓度的影响受到气象要素的驱动, 在夏季呈正向, 而冬季呈反向, 其中CO的影响相对较大. 6月气象要素与本地前体物排放的双因子交互驱动对O3浓度的空间分异具有增强作用. 边界层高度和近地面太阳辐射与本地前体物的组合解释力均大于0.7, 在不利的气象条件下, 应进一步加强对本地前体物排放的管控. 相似文献
7.
利用 2013~2022年的 5~8月臭氧检测仪(OMI)的甲醛柱浓度(HCHO)和对流层二氧化氮柱浓度(NO2)卫星遥感数据,结合地面臭氧(O3)观测数据,计算了山西 FNR(HCHO/NO2)的阈值,研究了山西夏季近地面 O3光化学生成敏感区的分布和变化 .结果表明:①2013~2022年夏季,山西 VOCs敏感区(FNR < 2.3)明显缩小,VOCs-NOx过渡区(FNR介于 2.3~4.1)先增后减,NOx敏感区(FNR > 4.1)显著扩张;②2013~2019年夏季,HCHO柱浓度上升与对流层 NO2柱浓度下降,共同导致 FNR上升,2016年起山西总体处于 NOx敏感区,但 NOx减排的进程中城市区域由 VOCs敏感区逐渐向 VOCs-NOx过渡区转变,导致 O3污染加重且普遍存在;2020~2022年,HCHO与 NO2协同下降,O3浓度有所降低 .③2022年夏季,临汾和运城出现了 O“3周末效应”的反转,其余 9个城市仍存在 O“3周末效应”,O“3周末效应”并不完全取决于前体物排放的变化,还与 O3光化学生成敏感性密切相关 .山西 O3污染治理需NOx和 VOCs协同减排,此外太原、阳泉、运城、晋城应继续深入推进 NOx减排 . 相似文献
8.
本文利用WRF-CHEM模式对关中地区2015年7月25日至30日的一次O_3污染事件进行了数值模拟。通过与地面观测数据对比发现,WRF-CHEM模式基本上可以合理模拟西安和咸阳城市群O_3和NO_2的质量浓度的时空分布。敏感性试验表明,在臭氧生成的峰值期(12:00—18:00 LT),交通源是城市重要的O_3源,无论在高浓度臭氧条件下还是低浓度臭氧条件下,贡献量都高于15μg?m~(-3),平均贡献量均高于24μg?m~(-3);工业源仅在臭氧峰值生成时期贡献明显;生物源无论在高浓度还是低浓度臭氧的条件下,平均贡献都在16μg?m~(-3)以上;居民源的贡献基本低于10μg?m~(-3);能源生产源有降低O_3质量浓度的作用,但在臭氧生成的峰值时期,能源生产源可以增加O_3质量浓度。随着交通源排放量的增加,O_3的质量浓度逐渐增加,尤其在臭氧的峰值期。在臭氧生成峰值期,当氮氧化物(NOx)减少50%时,除城市中心臭氧浓度略增加,其他地区臭氧质量浓度均在下降;当挥发性有机物(VOCs)减少50%时,城市群内臭氧质量浓度都在下降;当NO_x和VOCs同时减少50%时,臭氧质量浓度都呈现下降趋势,减少量可达20μg?m~(-3)以上。在整个研究区域内,H_2O_2/HNO_3比值均在0.6以上,这表明西安和咸阳城市群属于NO_x控制区。 相似文献
9.
关中城市群发展基础较好和开发潜力较大,是中国西部地区的重要经济和文化中心. 近年来关中地区空气质量的持续改善受到了近地面臭氧(O3)问题的显著影响,为采取有效措施防治O3污染,基于2018~2021年环境监测数据分析关中地区O3浓度年、月及日变化等特征规律;采用地理探测器研究O3浓度空间分异的驱动因素,通过后向轨迹模型和排放因子法等方法解析O3来源. 结果表明,关中地区O3浓度日、月变化呈单峰型特征,日最高值出现在15:00,最低值出现在07:00,月均峰值出现在6月,谷值出现在12月,O3浓度夏季最高,春季次之、冬季最小;O3超标天数中以轻度污染为主,且中度及以上污染呈先下降后增加趋势;关中地区O3浓度主要与前体物和气象因素关系密切,且各因子交互作用的解释力显著大于单一因子;关中地区O3浓度区域传输主要受偏东向气流影响,其次是西北方向,潜在源区主要在河南省和湖北省;挥发性有机物(VOCs)本地主要来源为溶剂使用源、工艺过程源和移动源,氮氧化物(NOx)主要排放源为移动源和工业生产燃烧源. 研究结果对关中地区O3科学防控具有指导意义. 相似文献
10.
细颗粒物(PM2.5)和臭氧(O3)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(O3_max)值分别为92.0 μg·m-3和81.9 nmol·mol-1.2014~2020年PM2.5平均每年降低7.5 μg·m-3,但是O3_max持续偏高.在季节尺度,冬季的12月和1月PM2.5浓度最高,夏季的8月浓度最低.相反地,O3_max在每年6月浓度最高.PM2.5浓度日变化规律为,夜间22:00至次日00:00最高,14:00~16:00最低.而O3浓度在07:00最低,随后逐步升高并在午后达到最高.在空间分布上,PM2.5在2014和2019年都呈现南高北低的趋势,O3_max在全市范围内均较高,仅在道路区域偏低.大气污染对人群健康影响的评估结果表明,2014年北京市与PM2.5相关的心血管和呼吸道疾病超额死亡人数分别为1580人和821人,与O3相关的呼吸道疾病超额死亡人数为2180人.2019年与PM2.5相关的超额死亡人数仅为2014年的50%,而与O3相关的超额死亡人数与2014年持平.北京市细颗粒物治理成效显著,但是O3污染问题凸显,O3已经成为危害北京市居民健康的首要大气污染物.未来需要加强PM2.5和O3协同治理. 相似文献
11.
基于石家庄市2019年7月近地面污染物和气象观测数据,分析夏季O3污染状况及其影响因素;结合WRF-CMAQ模式和O3浓度等值线(EKMA曲线),探究不同区域O3-VOCs-NOx的非线性响应关系,旨在探究最佳的前体物减排方案.结果表明,观测期间,石家庄市市区MDA8 O3超标率高达70.9%.污染天期间,伴随着高温、低湿、小风,且以南风和东南风为主.石家庄市市区属于VOCs控制区,郊县为NOx和VOCs协同控制区.在臭氧污染时段,市区在仅削减NOx排放,且削减比例超过50%时,持续减排NOx使得O3浓度呈逐渐下降趋势.在非臭氧日时段,市区在VOCs和NOx的削减比例大于1倍时,O3浓度才不会出现反弹.对于市区应考虑以仅削减VOCs为先;对于郊县区域而言,不同的NOx和VOCs削减比例下,O3浓度均会下降... 相似文献
12.
为了分析工业城市臭氧(O3)污染的特征及形成机制,2021年6月在华北平原淄博市开展了综合观测,利用盒子模型(基于MCMv3.3.1化学机制)探究O3前体物削减优化方案.结果表明:(1)O3污染时期伴随静稳、高温低湿和强辐射等气象条件,含氧挥发性有机物(OVOC)和烯烃等人为源挥发性有机物(AVOC)组分对O3生成潜势(OFP)和·OH反应速率(k·OH)贡献率最大;(2)模型研究发现O3主要受本地光化学生成和以输出性为主的区域传输影响,本地污染管控对降低O3污染更为重要;(3)污染时期高浓度的·OH(10×106 cm-3)和HO2·(14×108 cm-3)引发局地瞬时O3生成速率高值(峰值36×10-9 h-1),HO2·+NO和·O... 相似文献
13.
准确判断臭氧(O3)生成敏感性对O3污染成因分析和防控对策的制定至关重要.首次利用响应曲面方法设计最优试验方案,基于盒子模式模拟结果,快速量化O3对其前体物变化的响应.结果表明,CO对O3有正贡献,NOx和VOCs与O3呈现显著非线性关系,当φ(VOCs)与[φ(NOx)-13.75]比值大于4.17时,为NOx控制区,小于4.17时,为VOCs控制区;烯烃为影响O3生成的关键VOCs组分,当φ(烯烃)与[φ(NOx)-15]比值小于1.10且φ(烯烃)<35×10-9时,烯烃有利于O3的生成.响应曲面法在多因素和其交互作用对O3生成影响的研究中取得了良好效果,为高效判断O3敏感性提供了新的思路和方法. 相似文献
14.
基于生态环境监测和气象观测数据,分析了2016~2020年京津冀13个城市臭氧(O3)浓度特征,讨论了O3污染高发月份日最高温度(Tmax)、日均地面气压(p)、日均地面相对湿度(RH)和日均地面风速(v)等气象要素对O3-8h浓度和O3-8h超标情况的影响规律,并采用AQI级别预报准确率、O3浓度范围预报准确率和O3级别预报准确率等方法,评估了基于神经网络的O3统计预报效果.结果表明,2016~2020年期间京津冀13城市ρ(O3-8h-90per)分别为157.4、177.2、177.3、190.6和175.6μg·m-3,区域臭氧浓度5a上升了11.6%,2016~2019年期间总体呈波动上升趋势,2020年环比下降;2020年与2016年相比,除北京、张家口和承德略有下降外,其他10个城市ρ(O3-8h-90per)上升了6~45.5μg·m-3.O3-8h月均值呈现"两头低,中间高"现象,ρ(O3-8h)在4~9月的月均值超过了100 μg·m-3,在6月最高,为158.10 μg·m-3.城市O3-8h超标率范围为8.6%~19.2%,97.8%的O3-8h超标情况发生在4~9月.区域尺度上O3-8h浓度与日最高温度相关性最强,当Tmax在25~28℃区间时,所有城市开始出现O3-8h超标.O3-8h浓度与日均地面气压呈负相关关系;当RH在60%以下时,大部分城市O3-8h浓度随相对湿度上升缓慢增长;当RH在61%~70%以上时,大部分城市O3-8h浓度随日均相对湿度上升而下降.O3-8h超标时的地面主导风向主要为偏南风,大部城市O3-8h浓度高值易集中出现在2~3m·s-1及以下低风速区间.OPAQ统计模式提前1~9 d预报相关系数范围为0.72~0.86,AQI级别预报平均准确率为67%~86%,O3-8h浓度范围预报平均准确率为63%~84%.在O3-8h超标情况多发的4~9月,模式对O3轻度污染和O3-8h超标情况提前3 d预报准确率分别为69%和66%,可为O3-8h超标管控提供参考依据. 相似文献
15.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx 相似文献
16.
17.
基于环境空气质量站点数据及卫星遥感数据,研究了河南省近地面臭氧(O3)2015~2020年变化特征、趋势和生成敏感性.结果表明,2015~2020年,河南省近地面O3浓度先上升后下降,2018年浓度最高,O3日最大8 h滑动平均值(MDA8)年均值为110.70μg·m-3,各站点间的MDA8值差异逐渐缩小;河南省月均MDA8时间序列表现为上升趋势,增长速率为2.46μg·(m3·a)-1,经Mann-Kendall趋势检验,除漯河、南阳和平顶山市外其它地市上升趋势均具有显著性意义(P<0.05);6 a间四季MDA8浓度也呈增长趋势,增长大小为:秋季(19.31%)>冬季(17.09%)>春季(16.82%)>夏季(7.24%); 2015~2019年河南省对流层NO2高值集中在西北部,浓度呈下降趋势,下降速率为0.34×1015 molecules·(cm2·a)... 相似文献