首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
《环境科学与技术》2021,44(6):211-218
一直以来,塑料制品因方便快捷在人们的生活中广泛使用。然而,随着在水环境中越来越多地检测到微塑料,人们开始对其越来越重视。特别是近年来,在饮用水中检测出微塑料,因其对人体健康有一定危害,如可能会作用于人体肠道部位而导致肠道发炎,引起人们的广泛关注。该文介绍了饮用水中微塑料的存在现状以及饮用水厂各工艺对微塑料的去除效率,分析了不同的水处理方法对微塑料去除的贡献,简述了饮用水处理对微塑料的去除效果。对饮用水处理方法及工艺研究发现,各方法对大于10μm的大尺寸微塑料有较好的去除效果,但不能完全去除小于10μm的小尺寸微塑料。因此,将来的研究应更多地放在对小尺寸微塑料的去除上。  相似文献   

2.
郑伟康  刘振中  项晓方 《环境科学》2024,45(2):1210-1221
微/纳塑料(M/NPs)因颗粒小、易吸附和迁移性强等特点,广泛地分散在土壤、大气与水环境中,近年来在各大水体中均有检出.M/NPs作为一类新兴污染物,其生理毒性对人类健康产生很大的影响.目前该研究领域遇到的瓶颈在于对M/NPs的精准检测和高效去除.电化学技术因其在M/NPs的检测上表现出简携、灵敏和低成本等优势,对M/NPs的去除具有环保绿色、反应可控和效率高等优点,展现出巨大的应用潜力.以M/NPs的污染现状为出发点,对电化学技术应用于水环境中M/NPs的检测和去除进行了阐述和总结,分析了M/NPs的电化学传感方法以及传感器识别M/NPs的原理和特点,讨论了电絮凝、电吸附、电氧化和电还原技术对水体中M/NPs的去除效果及影响因素.结果表明,基于电化学传感方法检测M/NPs颗粒表现出良好的表征性能,通过电化学技术(电絮凝、电吸附、电氧化和电还原),M/NPs可被高效去除.电化学技术对M/NPs检测和去除的影响因素主要与传感器装置、电极材料、材料界面调控、参数条件和反应器体系有关.研究者未来应从传感器的设计、电极材料的开发和反应过程的优化这三方面聚焦,有望实现M/NPs从实验室的检测和去除转化到实际水体当中的应用.  相似文献   

3.
纳滤膜去除饮用水中微量三唑磷的研究   总被引:2,自引:0,他引:2  
分别采用NF200、NF90纳滤膜去除饮用水中的微量三唑磷,研究了操作压力、原水中三唑磷浓度、pH和离子强度等因素对其去除效果的影响,并探讨了两种纳滤膜截留三唑磷的机理.结果表明:两种纳滤膜均可有效去除饮用水中的微量三唑磷,NF200膜的去除率在90%左右,NF90膜的去除率可达97%以上;操作压力对NF200、NF9...  相似文献   

4.
淡水环境中微塑料与重金属的“木马效应”研究进展   总被引:1,自引:1,他引:1  
赵伟高  田一梅  赵鹏  赵令铵  金超 《环境科学》2023,44(3):1244-1257
微塑料(尺寸<5 mm的塑料)作为全球备受关注的新兴污染物,广泛存在于淡水环境中.微塑料易迁移,难降解,且比表面积大,对重金属等多种污染物有富集作用,大大增加了其对环境和生态的潜在危害.因此,本文首先定义微塑料在淡水环境中携带重金属并共同迁移的特殊环境行为为“木马效应”.随后,从淡水环境中微塑料的来源与分布、微塑料对重金属的富集作用、微塑料与重金属木马效应对其共同迁移行为的影响以及微塑料和重金属木马效应的生物影响这4个方面对淡水环境中微塑料与重金属的木马效应及其作用机制进行了总结和阐述.结果表明,作为面源广的污染物,微塑料广泛存在于淡水环境中;淡水环境中微塑料对重金属存在吸附行为,不同环境下对单一重金属吸附程度不同,主要受微塑料、金属和环境等因素共同影响,在多种重金属离子存在时会有竞争吸附;微塑料与重金属的木马效应会影响其共迁移行为;淡水环境中微塑料与重金属的木马效应,往往加剧了其对水生生物的毒性.通过全面了解淡水环境中微塑料与重金属的木马效应及其作用机制,可有效降低微塑料与重金属在淡水环境中的生态风险和对人类健康的影响提供借鉴.  相似文献   

5.

微塑料作为目前被广泛关注的新污染物之一,近年来在世界各地水环境中被频繁检出。微塑料不仅具有体积小、难降解、持久性等特点,而且可作为有毒金属、微生物、农药等污染物的载体,进一步增强它们的危害潜力。全面了解微塑料的来源和处理途径是确定微塑料污染控制关键问题以及实现对其有效管理的先决条件。回顾了国内外水环境中微塑料污染研究进展,梳理分析了水环境中微塑料的分类及来源,详细阐述了微塑料分离提取、定性定量检测方法,系统总结了微塑料对典型水生生物的单一影响以及微塑料与相关污染物对水生生物的复合影响;结合现有水污染控制技术,归纳了水中微塑料去除方法的优缺点,包括吸附、过滤、混凝沉淀、光催化、电絮凝、生物降解、膜生物反应器以及活性污泥法等技术。相关研究可为水环境中微塑料的去除与污染控制提供参考。

  相似文献   

6.
海洋塑料污染成为与气候变化、臭氧耗竭和海洋酸化并列的全球重大环境问题,其中海洋微/纳塑料成为关注的重点。纳塑料与微塑料相比,粒径更小,比表面积更大,环境丰度更高,更容易被海洋生物所摄食,对海洋生物产生的毒性更强。因此,纳塑料的海洋环境效应研究成为近年来环境科学领域的研究热点。但迄今为止,关于海洋纳塑料的环境行为与生物效应仍缺乏系统性的研究和清晰的认知。基于此,本文综述了海洋纳塑料的检测分析方法,概述了纳塑料的海洋环境行为,分析了纳塑料对海洋生物的毒性效应及其致毒机制,并展望了海洋纳塑料环境效应的研究方向,以期为科学评估海洋纳塑料的生态风险及有效应对海洋纳塑料污染提供重要参考。  相似文献   

7.
作为一种新型的全球性环境污染物,微塑料日益引起关注.人体可通过摄食等途径摄入微塑料,进而引起潜在健康风险.目前有关微塑料的研究日益增加,但关于人体微塑料暴露水平及其潜在健康危害方面的相关研究有限.本文在梳理微塑料的人体暴露途径及水平的基础上,从体内、体外两方面试验研究总结分析了微塑料暴露对细胞、哺乳模式动物小鼠组织的影响,结果表明:(1)人类可通过消化道、呼吸道以及皮肤接触的方式摄入微塑料,其中经口摄入是最主要的接触途径.(2)在人体多种组织、器官及代谢物中均检测到微塑料的存在,范围为0~134.3个/g.(3)动物试验表明,微塑料可以通过血液循环蓄积于心、肝、脾、肺、肾和睾丸等器官中,引起炎症反应、氧化应激、免疫损伤、菌群失调、代谢紊乱等,甚至可能产生跨代效应.(4)细胞试验表明,粒径较小的微塑料可穿透细胞膜进入细胞质中,引起细胞形态及功能改变,导致细胞活力下降,影响细胞生长与增殖,还可诱导ROS生成甚至产生DNA损伤等细胞毒性作用.微塑料的毒性作用可能与其类型、粒径、染毒浓度及受试物类型等有关,建议今后加强环境低浓度下微塑料及其吸附物质在食物链传递过程中毒性蓄积与变化的研究,以及开...  相似文献   

8.
为探究环境中微纳塑料的含量、归趋和生态风险,发展可靠的检测方法是重要前提.目前,对微纳塑料的分析方法多种多样,国内外已有多篇综述归纳了各方法的优缺点,甚至提出了"统一"或"标准化"的方法.然而,由于研究目标和技术方法本身的成熟度不同等原因,很难笼统地提出一套适用于所有监测或研究的方法.微纳塑料的研究是基于颗粒性和尺寸效应的研究,笔者将其划分为大粒级微塑料(0.02~5 mm)、小粒级微塑料(1~20 μm)和纳米塑料(1~1 000 nm)3个类别,分别概述各粒级的分析方法进展和技术目标等.对于大粒级微塑料,已形成相对成熟的检测方案,适合开展常规监测和大规模基线数据的调查,但方法多样化,数据的质量不统一导致可比性差,提高方法的可行性和统一性是努力重点;对于20 μm以下的小粒级微塑料,检测的准确度有待提高,发展可靠的定性及定量方法是当前的目标;对于1 000 nm以下的塑料颗粒和可溶性聚合物,发展尚不成熟,需要研究更有效的前处理和分析方法.今后,应针对不同粒级微纳塑料所面临的问题开展方法学研究,加强对微纳塑料环境行为等的基础研究,并逐步发展微纳塑料的预测模型,在可靠数据的基础上进行全面的生态风险评估.   相似文献   

9.
微塑料作为一种持久性污染物,对土壤生态系统具有严重影响,土壤中微塑料的污染已愈加受到国内外学者的广泛关注。当前关于土壤环境中微塑料的研究较少,针对当前土壤中微塑料的来源、分布、降解迁移、生态效应及污染防治等方面进行综述。主要包括以下几个方面:1)概括土壤生态系统中微塑料的来源、分布特点和迁移降解规律,确定了土壤环境中微塑料的赋存状态;2)总结土壤生态系统中微塑料与其他污染物的复合效应;3)分析了微塑料对土壤理化性质、动物、植物、微生物的影响,并揭示了微塑料对于土壤生态系统的影响;4)根据土壤微塑料的分布特点、降解迁移及生态效应提出污染防治措施。最后,对今后土壤微塑料的研究重点进行了展望。  相似文献   

10.
《环境科学与技术》2021,44(4):45-53
微塑料通过不同途径进入土壤系统,会在土壤中不断累积并对土壤环境构成威胁,最终可能会通过食物链进入人体影响人体健康。已有学者从不同的角度研究了微塑料对环境的影响,目前的研究主要集中在水生环境,陆生生态环境的研究相对较少。文章根据已有的研究,系统总结了土壤系统中微塑料的来源、微塑料对土壤质量的影响、微塑料与其他污染物形成的复合污染、微塑料对土壤生物的影响以及微塑料在土壤环境中的迁移。最后,作者对微塑料在土壤生态系统中的研究提出了展望,可为微塑料的环境问题研究提供一定的参考。  相似文献   

11.
饮用水中溴酸盐的去除技术   总被引:2,自引:0,他引:2  
臭氧在饮用水处理中得到了广泛的应用,但当水源中含有溴离子时,臭氧深度处理过程中会产生2B级潜在致癌物溴酸盐。我国新的《生活饮用水卫生标准》规定溴酸盐浓度为10μg/L。溴酸盐在水中是极易溶解,具有高度稳定性,溴酸盐一旦形成,就很难用传统的处理技术去除。综述了目前去除溴酸盐技术的最新研究进展及其优缺点,主要包括活性炭吸附去除法、离子交换法、亚铁离子还原去除法、零价铁还原去除法、紫外线照射法等去除技术。现有的去除技术大部分处于实验阶段,在实际应用中存在一定的局限性,因此需要进一步的实验研究,以便有效的应用于工程实践。  相似文献   

12.
纳滤技术在饮用水处理中的研究进展与应用   总被引:1,自引:0,他引:1  
纳滤技术作为一种新型的膜分离技术,近年来成为水处理研究的热点.论文介绍了纳滤膜的特点及分离机理,详细阐述了纳滤膜技术在饮用水净化过程中的技术特点,如降低饮用水的硬度,去除饮用水中的重金属物质、有机污染物、藻类、细菌病毒等成分.同时探讨了纳滤的膜污染问题以及引起膜污染的因素.列举了比利时、日本、美国以及中国山东长岛等地纳滤膜技术的工程实例,说明了纳滤膜技术在饮用水处理中应用的处理效果.  相似文献   

13.
为了解饮用水中异味的来源和常用去除技术,在文献调研的基础上,介绍了饮用水中致嗅物质的来源,分析了饮用水异味的常用去除技术:吸附法、化学氧化法和生物处理法,总结了三种方法的优缺点.最后,结合江苏省环境应急所开展的工作,阐述了饮用水源地异味事件的应急处置过程,为应对工作提供参考.多部门合作和专家参与是处置过程中不可缺少的环节.  相似文献   

14.
在2010年至2012年进行的上海某水源地水质监测资料的基础上,着重分析了该水源地2011年1月至10月总磷、总氮等多个分析因子的季节变化规律及点位分布状况,得出该水源地水库水体总磷及溶解氧浓度均符合国家相关标准,但总氮超过相应类别的标准;水体中的总磷、总氮、水温、光照条件、叶绿素a、溶解氧、透明度等是影响水体富营养化的重要环境因子;水源地的水质在温度低于20℃的春、秋、冬三季藻类爆发的可能性较低,但温度较高的夏季,具有藻类爆发的可能性等结论。从而反映了该水源地的富营养化现状及对市民饮用水影响的重大意义,并提出了防治建议。  相似文献   

15.
对饮用水系统中生物膜的形成和影响生物膜形成的各种因素进行了阐述。生物膜控制技术包括降低有机物含量、物理化学方法、酶试剂控制、分散剂使用、紫外消毒等。天然水体中生物膜对剥离剂和紫外具有一定的抗剥离能力,常规手段难以有效去除饮用水系统中的生物膜,即使500mg/L的剥离剂也难以去除已经形成的生物膜。  相似文献   

16.
汤浦水库是一座专用性大型饮水水源,目前水质状况为中营养,为改善水库水质,应用生态的方法开展水生植物生长除氮试验研究,即在水面种植水生植物,利用水生植物的生长去除水中的营养物质,但是由于在大水域内种植水生植物水位多变,水深大,风浪较大,沉水植物难以生长,漂浮植物容易逃逸,一般性的水面水生植物种植最后存活率只有20%左右....  相似文献   

17.
研究了7种常用的人工甜味剂〔安赛蜜、三氯蔗糖、糖精、甜蜜素、纽甜、阿斯巴甜和NHDC(新橙皮苷二氢查耳酮)〕在污水处理厂及自来水厂的分布. 7种人工甜味剂在污水处理厂进水中均被检出,质量浓度为6.4~31 671.0 ng/L. 安赛蜜、三氯蔗糖、糖精、甜蜜素在污水处理厂的出水中被检出,质量浓度为32.4~11 204.0 ng/L. 这些甜味剂将随污水处理厂的出水排放而进入水环境. 安赛蜜、三氯蔗糖、糖精、甜蜜素、纽甜在自来水厂进水中被检出,质量浓度为低于定量限~579.4 ng/L,其中前4种在自来水中被检出,质量浓度为23.3~504.2 ng/L. 沉淀、絮凝、氯化消毒作用对人工甜味剂没有明显的去除作用. 生物降解能有效去除糖精、甜蜜素、阿斯巴甜、纽甜和NHDC,但对安赛蜜和三氯蔗糖去除率不高,去除率均小于20%.   相似文献   

18.
土臭素和2-甲基异莰醇是饮用水中存在的主要致嗅味物质,活性炭吸附是目前研究最多、应用最广泛的嗅味物质去除技术,文章重点介绍了影响活性炭吸附的各种因素,对化学氧化法和生物降解法去除嗅味物质的研究进展进行了简述。  相似文献   

19.
根据现场制备要求,优化传统高铁制备工艺,得出工业化现场制备液体高铁的最佳工艺条件,进而用于水库水氨氮的去除研究。实验结果表明,通过优化工艺所制得高铁浓度为24 g/L左右,铁转化率为80%左右。高铁对氨氮的去除效果随高铁与氨氮的摩尔比增大而增大,当摩尔比为0.45时,高铁对水源水中氨氮的去除率可达75%;在保证高去除率的基础上,通过延长絮凝反应时间,可降低高铁投加量;如果采用高铁预氧化,聚合铝或三氯化铁作絮凝剂,可提高对氨氮的去除率,还能大幅度降低高铁投加量,缩短反应时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号