共查询到18条相似文献,搜索用时 62 毫秒
1.
北方秋冬季为重污染过程频发季节,为了解聊城市冬季重污染过程中PM_(2.5)及化学组分污染特征,于2016年1月7~11日在聊城市区开展PM_(2.5)样品采集并分析了其中水溶性离子、碳成分及无机金属元素这3种化学组分,并对污染特征及成因进行了分析.结果表明,此次污染过程PM_(2.5)浓度呈现明显的倒V字型,平均浓度为238.3μg·m~(-3),超过国家环境空气质量标准(GB 3095-2012)二级浓度限值2.2倍;NH_4~+、NO_3~-和SO_4~(2-)为PM_(2.5)的主要水溶性离子成分;随污染加重或减轻,NH_4~+、SO_4~(2-)、NO_3~-、Cl-和Mg~(2+)浓度呈现增加或降低趋势,而Ca~(2+)变化趋势与之相反.污染鼎盛时,NH_4~+、NO_3~-和SO_4~(2-)浓度分别为48.96、68.45和80.55μg·m~(-3),达到起始阶段的6.29、7.31和7.84倍;过程期间OC和EC的浓度为20.8~60.2μg·m~(-3)和3.0~7.5μg·m~(-3),OC浓度高于EC且变化幅度明显偏大;过程期间各日无机金属元素浓度和分别为10.2、22.4、16.0、19.6和8.2μg·m~(-3),富集因子(EF)结果显示,各元素EF均小于10,未被富集,表明污染过程中其主要来源于地壳等自然源;PM_(2.5)质量浓度重构结果表明,有机物(OM)、SO_4~(2-)和NO_3~-为PM_(2.5)的主要组分,其次为NH_4~+、地壳物质和其他离子,EC和微量元素含量相对较低.随着PM_(2.5)污染加重,二次无机盐(SO_4~(2-)、NO_3~-及NH_4~+)浓度及所占比例均随之增加,OM浓度随之增加但比例有所下降,而地壳物质浓度及比例均下降,表明二次无机转化是此次污染过程的主要原因,主要受燃煤和机动车排放影响. 相似文献
2.
2013年中国东部地区多次发生持续的重霾污染事件.为探究其气象条件与重污染事件的关系,本文使用欧洲中心2013年东亚地区的逐日气象数据和北京、天津、石家庄的逐时PM2.5浓度数据以及2013年MICAPS观测数据,分析了重污染事件对应的天气形势,并使用NAQMPS针对2013年1月的重污染事件进行情景模拟.研究结果表明:1北京、天津和石家庄地区PM2.5浓度,夏秋季节日变化不显著,秋冬季节白天低夜间高;3地PM2.5浓度均表现为12-1月浓度最高,7月最低;.2500 hPa平直西风气流,850 hPa弱暖平流,地面处于弱高压后部或高压底部高低空配置下的天气系统,对应着重污染事件的高发期;3源强不变的情况下,京津冀地区由弱高压前部控制转为弱高压控制时,地面温度升高0~5℃,相对湿度增加30%~50%,风速下降2~3 m·s-1,PM2.5浓度变化可达300 μg·m-3. 相似文献
3.
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素. 相似文献
4.
收集了太原市2014-2018年秋冬季(10月-翌年2月) PM2.5、SO2、NO2和CO浓度数据以及对应时刻气象资料,基于逐日PM2.5在16:00-01:00时的变化将其分为消散过程、慢速积累过程和快速积累过程,从PM2.5积累的角度分析了太原市PM2.5的污染特征及影响因素,并将其运用于重污染天气形成过程的探讨.结果表明,太原秋冬季慢速积累过程占比最高为44%,快速积累过程占27%,消散过程占29%.10月以慢速积累为主占比超过60%,11和12月快速积累占比最高接近40%,1、2月慢速积累再次占主导地位;快速积累过程占比最高的年份为2014年和2016年均超过35%,慢速积累和消散占比最高的年份均为2017年.慢速积累状态下,二次污染物的生成有助于PM2.5的积累速率增加;快速积累状态下一次污染物对PM2.5积累速率影响更明显;发生快速积累时,来自临汾、晋城等东南方向区域输送显著增加.太原市重污染天气的形成过程以慢速积累为主,占比77%.重污染天气下,市区多以硫酸盐和硝酸盐复合污染为主,而郊区以硝酸盐污染为主. 相似文献
5.
于2009年春、夏和秋季在全球大气本底基准监测站青海瓦里关同步观测了PM_(2.5)中主要化学成分和大气散射系数(bsp).结果显示,观测期间瓦里关PM_(2.5)浓度年均值为(12.6±12.0)μg·m~(-3),显著低于国家年均值标准.总水溶性无机离子和碳气溶胶浓度分别为(1.7±1.6)μg·m~(-3)和(3.2±1.0)μg·m~(-3),分别占PM_(2.5)浓度的16.5%和25.4%.基于IMPROVE经验公式,瓦里关bsp最主要的贡献因子是有机物(OM)和土壤尘(FS),贡献率分别达到48%和28%,其它组分对bsp的贡献率均小于10%. 相似文献
6.
武汉地区秋冬季清洁与重污染过程的水溶性离子特征研究 总被引:6,自引:0,他引:6
利用武汉地区2014年秋、冬季在线离子色谱分析仪Marga监测所得的大气PM_(2.5)中水溶性离子数据和武汉市环境空气质量自动监测的细颗粒物数据,分析了武汉地区秋、冬季重污染和清洁过程的大气污染特征.结果表明,PM_(2.5)是武汉地区秋、冬季大气污染的首要污染物,无论是在清洁还是重污染过程中,NO_3~-、SO_4~(2-)和NH_4~+3种成分都是PM_(2.5)的主要无机成分.重污染过程中PM_(2.5)的平均浓度是清洁过程的4.5倍,而3种主要水溶性离子平均浓度增长至清洁过程的5~6倍,且有着显著的相关性,二次生成水溶性离子的污染已成为武汉秋、冬季大气污染的主要因素.Cl-在重污染过程中的浓度及与PM_(2.5)的相关系数显著增大,表明化石燃料燃烧等过程也对重污染的形成产生了较显著的作用,值得关注的是,K~+在重污染过程中的浓度及与PM_(2.5)的相关系数增大也验证了燃烧过程对重污染起到的贡献.硫氧化率和氮氧化率的分析结果表明,重污染过程中的二次转化要多于清洁过程,可能是非均相反应生成了二次污染的硫酸盐和硝酸盐.线性回归分析的方程系数研究表明,NH_4NO_3和(NH_4)_2SO_4可能是清洁和重污染过程中主要的盐类物质.NO_3~-/SO_4~(2-)的平均质量浓度比说明移动源对武汉地区秋、冬季二次污染的形成和发展已经起到越来越大的作用,特别是重污染过程中的影响更大. 相似文献
7.
从天气背景场、气象要素、前体物和PM_(2.5)化学组分、气团运动轨迹以及大气氧化性等方面对北京市夏季两种不同的O_3和PM_(2.5)污染状况进行了分析.结果表明,O_3达到中度污染而PM_(2.5)浓度优良(O_3和PM_(2.5)一高一低)污染状况的天气形势场为:高空为偏西北气流,地面受高压后部控制;而O_3和PM_(2.5)同时达到中度污染(O_3和PM_(2.5)两高)的天气形势场为:高空为偏西气流,地面受低压控制.与O_3和PM_(2.5)一高一低污染状况相比,O_3和PM_(2.5)两高时的气象要素特征为:偏南风更为明显和相对湿度更高.O_3和PM_(2.5)两高时污染物浓度演变特征为,O_3和PM_(2.5)的起始浓度较高,PM_(2.5)日变化特征更为明显,而O_3平均浓度却低于O_3和PM_(2.5)一高一低的污染状况.前体物、大气氧化性以及PM_(2.5)化学组分分析的结果表明,较高的起始浓度在不利气象条件下的积累和吸湿增长以及当天较大偏南风造成的区域传输可能是造成O_3和PM_(2.5)两高污染状况中PM_(2.5)浓度达到四级中度污染的主要原因. 相似文献
8.
北京城区PM_(2.5)不同组分构成特征及其对大气消光系数的贡献 总被引:1,自引:0,他引:1
为研究北京城区PM2.5不同组分对大气消光系数的贡献率,于2013年10月—2014年8月使用3台PQ200采样器在北京市环境保护科学研究院采集PM2.5样品并进行质量重建,采用IMPROVE方程计算大气消光系数并分析各组分的贡献率.结果表明:1北京城区ρ(PM2.5)年均值为(90.3±8.1)μg/m3,相比2005年有所下降,颗粒物呈弱碱性,NH4+略有剩余.2PM2.5质量重建后,化学构成为OM〔32.1%,为ρ(OM)占ρ(PM2.5)比例,下同〕、NO3-(13.6%)、SO42-(13.9%)、NH4+(11.1%)、Cl-(3.8%)、其他离子(4.0%)、EC(元素碳,5.0%)、FS(土壤尘,8.9%)、微量元素(1.3%)和未知物质(6.7%);与2005年相比,OM、NO3-、NH4+等二次污染物质量浓度占ρ(PM2.5)比例均显著增加,ρ(水溶性离子)占ρ(PM2.5)的比例随空气污染加重而增加.3北京城区大气消光系数年均值为(504.6±49.3)Mm-1,OM、(NH4)2SO4、NH4NO3、EC和FS的贡献率分别为37.5%、28.3%、25.2%、7.6%和1.4%;冬季由于ρ(PM2.5)高,大气消光系数最高,为(589±124.3)Mm-1,约是春季的2倍;夏季由于相对湿度大,PM2.5吸湿粒径增大,大气消光系数仅次于冬季.OM对大气消光系数贡献率为冬季最高,而(NH4)2SO4的贡献率在冬夏季均大于NH4NO3. 相似文献
9.
为了快速分析天津市区冬季以及重污染过程中PM2.5的化学组成特征及来源,本研究于2017年1月利用在线监测仪器快速采集了天津市区环境受体中PM2.5及其化学组分的小时数据,并通过PMF(positive matrix factorization,正定矩阵因子分解法)模型解析了天津市区2017年1月及重污染过程中PM2.5的主要贡献源类,分析了重污染过程中排放源的变化趋势.结果表明:2017年1月天津市区PM2.5浓度为6.0~449.0 μg·m-3,平均值为153.3 μg·m-3.NO3-、SO42-、NH4+是PM2.5中水溶性离子的主要组分,三者之和占水溶性离子总量的88.3%.NH4+与Cl-、NO3-、SO42-均表现出显著的正相关性(r=0.82,0.95,0.97;p<0.01).NO3-和SO42-(r=0.90;p<0.01),Ca2+与Mg2+(r=0.65;p<0.01)均表现出显著的相关性,说明它们分别具有较高的同源性.OC和EC也是PM2.5的重要组成部分,两者之和占PM2.5质量浓度的20.4%.重污染过程中,PM2.5及其主要离子的浓度显著的增加(p<0.01),并存在较高的二次离子生成.PMF解析结果表明,二次源类是天津市区2017年1月PM2.5的首要源类,分担率为38.1%,其次为机动车源(分担率为25.6%)、燃煤源(分担率17.1%)、扬尘(分担率10.1%)和生物质燃烧(分担率9.1%).重污染过程中,二次源是PM2.5的主要贡献源类,分担率达到39.3%;说明重污染期间存在显著的二次转化及二次粒子的积累过程.重污染发生演变过程中,二次源、机动车源和燃煤源对PM2.5贡献表现出显著增加的趋势,而扬尘和生物质燃烧的贡献则没有显著增加. 相似文献
10.
基于2023年全年在北京城区车公庄点位开展的大气细颗粒物(PM2.5)浓度及其组分连续在线监测,研究PM2.5浓度及其组分的演变规律和来源特征.结果表明,地壳物质为PM2.5首要组分,占比26.3%,次要组分为硝酸盐,占比为24.1%,二次无机离子(SNA)占比为43.5%,兼具沙尘和二次污染等多重影响因素.分季节来看,春、夏、秋和冬季SNA占比分别为35.3%、37.4%、54.0%和45.7%,其中2月和9月SNA占比最高(56.2%和55.1%);春季地壳物质占比37.1%,其中4月最高达45.6%.各组分日变化差异明显,与其污染源排放、生成机制及边界层变化等有关.整体上,随着PM2.5浓度升高,有机碳(OC)和元素碳(EC)占比下降,SNA占比上升.氮氧化率(NOR)和硫氧化率(SOR)远大于0.1,且NOR随PM2.5浓度增加而增加,二次有机碳(SOC)在OC中占比为59.2%~78.0%.基于PMF的源解析结果表明,PM2.5的来源依次为:二次硝酸盐、机动车源、扬尘源、二次硫酸盐、二次有机物、工业源、燃煤源和烟花源,贡献率分别为37.4%、16.1%、13.5%、12.7%、8.6%、4.6%、3.8%和1.1%.春、夏、秋和冬季均以二次硝酸盐为主要来源,贡献率分别为37.5%、22.2%、44.5%和39.6%;夏季以二次硫酸盐和二次有机物贡献较突出,贡献率分别为21.0%和21.2%;扬尘源为春季次要来源,贡献率为26.2%.对3次典型污染事件(冬季采暖期霾污染、春季细颗粒物叠加沙尘污染和秋季PM2.5与O3复合污染)的分析结果表明,二次积累是主要污染成因,二次源贡献率分别为77.3%、53.4%和78.7%.冬季采暖期污染事件受区域燃煤源影响大,燃烧源平均贡献率为4.8%;春季污染事件受沙尘影响大,扬尘源平均贡献率为29.8%;秋季强大气氧化性促进二次转化,复合污染事件中二次硫酸盐平均贡献率为32.2%. 相似文献
11.
利用PM2.5污染监测数据、气象资料和WRF模式,研究了2013年10月2日至10日石家庄地区秋季一次典型的空气污染过程,结果表明,PM2.5质量浓度的上升和下降阶段与相继出现的台风\"菲特\"和\"丹娜丝\"输送气流及其背景场有关,本次污染过程同时受台风系统背景场、副热带高压系统和大陆高压系统协同控制.石家庄PM2.5质量浓度演变分为上升、下降、再上升和下降4个阶段,浓度曲线呈现双峰特征,分别对应台风\"菲特\"加强、减弱、台风\"丹娜丝\"加强和减弱阶段.污染过程中,PM2.5日均质量浓度最高值是425 μg·m-3,导致这一现象的原因是由于台风\"菲特\"和\"丹娜丝\"系统外围东南暖湿气流进入石家庄地区,高空1000、1800和2600 m处出现逆温层,下沉气流最大风速是0.2 m·s-1,覆盖并影响石家庄地区,形成稳定的大气条件,利于PM2.5污染物持续积累,造成石家庄地区PM2.5浓度达到峰值并出现重污染事件. 相似文献
12.
为了解秦皇岛市PM2.5和O3复合污染特征,基于2018~2022年秦皇岛市环境空气污染物质量浓度数据、气象数据以及PM2.5化学组分数据进行分析.结果表明,2018~2022年PM2.5年平均值、季节平均值、污染天数以及最大日平均值整体呈下降趋势,年际和春秋季平均值分别下降24.32%、31.65%和21.05%.在PM2.5污染天中,PM2.5质量浓度平均值下降10.39%.根据气象要素分析,春秋季和各污染时段中,主导风向为偏西风,其中在PO复合污染时段中,高质量浓度污染物风向以西南风为主,各时段风速基本低于2 m·s-1.PM2.5中度污染时段温度与春秋季温度平均值接近,PO3和PO4时段温度高于秋季平均值,低于O时段.春秋季水溶性离子中,春季WSIIs质量浓度下降34.99%,秋季2019~2022年WSIIs质量浓度相近.碳组分中,秋季OC质量浓度相近,EC和春季OC、EC质量浓度分别下降41.11%、28.18%和40.29%.各污染时段水溶性离子中SNA质量浓度在WSIIs中占比达到90%以上,春秋季PO时段SNA质量浓度均高于O时段.在相同的污染类型中,Cl-质量浓度表现为春季高于秋季.碳组分中,PM2.5中度污染时段(P3和P4)的OC质量浓度最高,春秋季PO时段SOC质量浓度均高于P和O时段.OC/EC和EC/TC值显示,P和PO时段碳组分主要来自于化石燃料燃烧,O时段主要来自于生物质燃烧和化石燃料燃烧. 相似文献
13.
2016年12月17~19日重污染期间,在天津市武清区高村开展车载系留气球颗粒物浓度垂直观测,并以观测数据为基础,计算了区域内PM_(2.5)传输通量.结果表明重污染过程期间,大气混合层较低,约200 m左右,PM_(2.5)浓度垂直分布特征与混合层高度密切相关,混合层以下,PM_(2.5)浓度较高,垂直变化特征不显著,形成明显的污染层,混合层以上,PM_(2.5)浓度迅速降低并维持在降低水平.观测期间,粒径小于1. 0μm颗粒物浓度较高,粒径大于2. 2μm颗粒物浓度较低,近地层粒径为0. 777μm颗粒物浓度最高.颗粒物浓度粒径谱分布与相对湿度和混合层高度相关,高湿度和低混合层下颗粒物浓度粒径谱分布较宽泛.观测期间,PM_(2.5)在西南方向上的传输通量最高,占总传输通量的63. 3%,其中46~156 m和156~296 m高度之间PM_(2.5)传输通量最高.近地面300 m内PM_(2.5)传输主要以西南方向传输为主,300 m以上传输方向较分散. 相似文献
14.
为探究典型重污染过程的污染特征与大气边界层结构演变规律,基于PM2.5采样数据、气象观测数据及WRF-Chem模式,以北京市和石家庄市2016年12月27日—2017年1月10日一次重污染过程为研究对象,对气象要素、PM2.5化学组分、天气背景场、边界层结构演变特征,以及大气边界层结构变化对ρ(PM2.5)及其主要化学组分的影响进行分析.结果表明:①研究期间,北京市和石家庄市ρ(PM2.5)分别为(165.63±110.89)(247.67±95.22)μg/m3,石家庄市污染程度高于北京市;高空纬向环流和地面弱高压控制的天气背景场,低于1.75 m/s的风速以及超过75%的相对湿度是造成北京市与石家庄市重污染的不利气象条件.②重污染时段北京市与石家庄市SNA(SO42-、NO3-、NH4+三者的统称)与碳质组分(OC、EC)占比之和超过76%,是PM2.5中的两大主要组分;重污染时段ρ(SNA)占比明显上升,北京市与石家庄市ρ(SNA)占比由非重污染时段的42.23%、45.93%分别升至重污染时段的58.87%、59.62%;北京市与石家庄市ρ(OC)/ρ(EC)分别为5.13、3.51,表明在重污染时段两城市存在明显的二次有机气溶胶污染.③WRF-Chem模式模拟结果表明,PM2.5污染严重时北京市与石家庄市在300~500 m处均出现明显的逆温,垂直风场主要表现为低层偏南风顺时针向上切变为偏西风,切变高度在400~1 000 m,逆温层结与明显垂直风切变的边界层特征共同抑制了污染物的湍流与扩散.④北京市与石家庄市重污染时段的PBLH(Planetary Boundary Layer Height,大气边界层高度)日均值与非重污染时段相比分别下降了202、128 m,PBLH每下降100 m,北京市与石家庄市ρ(PM2.5)分别上升18.81、29.85 μg/m3,PBLH下降是导致两城市ρ(PM2.5)快速上升的重要因素.北京市与石家庄市的PBLH与PM2.5组分质量浓度之间的相关性不同,北京市PBLH与ρ(SNA)的相关性高于与碳质组分质量浓度的相关性,石家庄市PBLH与ρ(EC)相关性最高,表明此次重污染过程中北京市PM2.5污染特征以二次形成为主,而石家庄市以一次排放为主.研究显示,北京市与石家庄市此次重污染过程与大气边界层结构变化密切相关. 相似文献
15.
陕南农村冬季PM2.5主要化学组分特征 总被引:1,自引:0,他引:1
通过对陕南农村冬季PM_(2.5)采样分析,获得PM_(2.5)质量浓度及主要化学组分特征。PM_(2.5)平均质量浓度为89.5±42.0μg·m~(-3),超过国家二级标准。观测期间PM_(2.5)中OC、EC浓度平均值分别为16.0±6.9μg·m~(-3)和5.7±3.2μg·m~(-3),OC/EC平均比值为3.0±0.4。主要水溶性离子组分为NO_3~-、SO_4~(2-)和NH_4~+。粒子数浓度与表面积浓度峰值主要集中在0.5μm以下粒径段。PAHs、BeP和BaP平均质量浓度分别为48.9±10.9 ng·m~(-3)、3.0±0.9 ng·m~(-3)和1.2±0.7 ng·m~(-3),PAHs污染较严重,强致癌物BaP浓度超过国家环境空气质量标准年平均浓度限值。当地农村以石煤为主的能源结构及采用的燃烧方式是导致污染的重要因素。 相似文献
16.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别. 相似文献
17.
为了研究河北省边界层气象要素与PM2.5的关系,综合利用常规气象探测资料、逐小时地面自动站气象观测资料、环境监测站逐小时AQI及ρ(PM2.5)资料等进行了统计分析.结果表明:①冬季海平面气压低于1 030 hPa、24 h变压为-3.0~-2.0 hPa、地面相对湿度高于60%、露点温度高于-10 ℃时发生全省性重污染天气的可能性较大;而海平面气压高于1 040 hPa、24 h变压在4.0 hPa以上、地面相对湿度低于40%、露点温度低于-10 ℃时,有利于清洁天气的出现.清洁天气下边界层的盛行风向多与冷空气活动有关;污染天气下盛行风向有区域性差别,边界层小风(<3.0 m/s)的风速频率高于90%. ②过程雨量达到中雨及以上量级的降水对PM2.5具有较明显的清除作用,中雨量级降水对PM2.5清除速率约为2 h,但优良空气质量持续时间短,平均为15 h;大雨及以上量级的降水对PM2.5清除率达67.8%,并且优良空气质量可以持续27 h. ③与降水相比,风对PM2.5的清除作用更为显著.较强偏南风对空气质量有一定改善,但优良空气质量仅持续16 h;大于3.0 m/s的系统性偏北风对PM2.5清除率高达85.1%,优良空气质量持续长达32 h,空气质量的改善最为彻底.研究显示,PM2.5与边界层气象要素关系紧密,不同级别的风和降水对PM2.5的清除程度存在显著差异. 相似文献
18.
采用数值模拟(CAMx)与污染物、气象观测资料相结合的方式,对太原市及周边区域2014年10月6-12日一次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析.结果表明:2014年10月8-10日太原ρ(PM2.5)日均值平均为175μg·m-3,太原城区约1460 km2的国土面积处于重度污染(ρ(PM2.5)>150μg·m-3)之下,而京津冀约20×104 km2的国土面积达到重度污染水平;区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,逆温明显(2.14℃/100m)、风速小(1.91 m·s-1)、湿度大(68.13%)、负变压(-0.74 hPa)、正变温(0.92℃).模拟结果显示,8-10日重污染期间区域输送对太原PM2.5的贡献率在17%~24%之间,太原市PM2.5浓度以本地贡献为主;估算的2014年太原城区PM2.5排放量是其大气环境容量的1.4倍,重污染期间大气环境容量的大幅降低又加剧了空气污染的程度. 相似文献