首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
ABSTRACT

Aerosol light absorption as black carbon (BC) was measured from November 19, 1995, to February 6, 1996, at a location 0.65 km downwind of the center of McMurdo Station on the Antarctic coast. The results show a bimo-dal frequency distribution of BC concentrations. Approximately 65% of the measurements were found in a mode at a low range of concentrations centered at ~20 ng/m3. These concentrations are higher than those found at other remote Antarctic locations and probably represent contamination from the station. The remaining measurements were in a high-concentration mode (BC ~300 ng/m3), indicating direct impact of local emissions from combustion activities at the station. High values of BC were associated with winds from the direction of the station, and the BC flux showed a clear directionality. Maximum BC concentrations occurred between 7:00 and 11:00 a.m. The "polluted" mode accounted for more than 80% of the BC frequency-weighted impact at this location.  相似文献   

2.
Little is known about personal exposure levels of black carbon (BC), a fraction of PM2.5, specifically in the transport microenvironments. In this study, real-time personal exposure to BC recorded by a portable microAeth AE51 was investigated in microenvironments in a round-trip from Hanoi (Vietnam) directly to Singapore. Personal exposure to BC was monitored in microenvironments at residential flat, in various surface modes of transport (taxi, bus, train), at the airports, and on the airplanes. The study found that personal exposure levels of BC in Singapore were higher than those in Hanoi for the same type of microenvironment in general for most of the microenvironments, except for smoking rooms. The highest exposures in each city were in smoking room in Noi Bai International Airport (NIA) and at bus station in Singapore, reached 98,709 ng/m3 and 44,513 ng/m3, respectively; the lowest personal exposure level was in-flight (approximately 250 ng/m3) for both trips. It is also remarkable that personal exposure to BC in indoor microenvironments was higher than outdoor levels.

Implications: Real-time personal exposure to BC was investigated in microenvironments in a round trip from Hanoi (Vietnam) directly to Singapore. BC personal exposure levels in Singapore were higher than those in Hanoi for the same type of microenvironment except for smoking rooms. Personal exposure to BC levels in indoor microenvironments was higher than in outdoor microenvironments. The highest levels of exposure were 98,709 ng/m3 in the smoking room at Noi Bai International Airport (Hanoi) and 44,513 ng/m3 at the bus station in Changi (Singapore). The lowest BC level was in-flight for both trips, at approximately 250 ng/m3.  相似文献   


3.
Hourly concentrations of ambient fine particle sulfate and carbonaceous aerosols (elemental carbon [EC], organic carbon [OC], and black carbon [BC]) were measured at the Harvard-U.S. Environmental Protection Agency Supersite in Boston, MA, between January 2007 and October 2008. These hourly concentrations were compared with those made using integrated filter-based measurements over 6-day or 24-hr periods. For sulfate, the two measurement methods showed good agreement. Semicontinuous measurements of EC and OC also agreed (but not as well as for sulfate) with those obtained using 24-hr integrated filter-based and optical BC reference methods. During the study period, 24-hr PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations ranged from 1.4 to 37.6 microg/m3, with an average of 9.3 microg/m3. Sulfate as the equivalent of ammonium sulfate accounted for 39.1% of the PM2.5 mass, whereas EC and OC accounted for 4.2 and 35.2%, respectively. Hourly sulfate concentrations showed no distinct diurnal pattern, whereas hourly EC and BC concentrations peaked during the morning rush hour between 7:00 and 9:00 a.m. OC concentrations also exhibited nonpronounced, small peaks during the day, most likely related to traffic, secondary organic aerosol, and local sources, respectively.  相似文献   

4.
Wang P  Wang SL  Fan CQ 《Chemosphere》2008,72(10):1567-1572
Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted in Nanjing (China). The 12-h daily sampling program (from 8:00 am to 8:00 pm) for ten consecutive days was conducted in April, July and October 2005, and in January 2006 at about 1.5m above the ground level. For comparative purposes, sampling events were simultaneously conducted at two stations, one at the urban center and the other about 12 km from city center for suburban background monitoring. It was observed that the most abundant members of the PAE group were dimethyl phthalate (DMP) (10.1 ng m(-3), average), diethyl phthalate (DEP) (3.4 ng m(-3)), dibutyl phthalate (DBP) (58.8 ng m(-3)), butylbenzyl phthalate (BBP) (3.2 ng m(-3)), di-2-ethylhexyl phthalate (DEHP) (20.3 ng m(-3)) and di-n-octyl phthalate (DOP) (1.2 ng m(-3)). The average contribution of PAEs in the gas phase to the total PAE concentration (Sigma(6)PAE, sum of six PAE congeners) ranged from 75.0% to 89.2%. Both particulate- and gas-phase Sigma(6)PAE concentrations decreased with increasing temperature. Experimentally determined gas-particle partitioning (K(p)) of PAEs is well-correlated with their vapor pressure. The Sigma(6)PAE levels in the urban area are approximately 3.5 times as high as the levels found at the suburban station. The vertical profiles from 1.5 to 30.0m above the ground display slight height dependence.  相似文献   

5.
In recent years, ambient measurements of hourly ozone precursor concentrations, namely speciated and total nonmethane organic compounds (NMOCs), have become available through the Photochemical Assessment Monitoring Stations (PAMS) program. Prior to this, NMOCs were measured in the central business district using a canister to obtain the 3-hr integrated sample for the 6:00 a.m.-9:00 a.m. period. Such sampling had been carried out annually for nearly a decade at three locations in the New York City metropolitan area. The intent of these measurements, along with measurements of the other ozone precursor, NO(x), was to provide an understanding of ozone formation and the emissions loading and mix in the urban area. The analysis of NMOC and NO(x) measurements shows a downward trend in the case of NMOC. In addition, we compared the canister-based NMOC concentrations with data obtained from the PAMS program for the 6:00 a.m.-9:00 a.m. period. Analysis of the NMOC concentrations reveals poor spatial correlation between the various monitors, reflecting the effect of localized emissions. This suggests that NMOC measurements made at a single location cannot be viewed as representative of the entire region. On the other hand, correlations were found to be higher among the NO(x) monitors, indicating the commonality of emission  相似文献   

6.
A simple procedure for correcting loading effects of aethalometer data   总被引:1,自引:0,他引:1  
A simple method for correcting for the loading effects of aethalometer data is presented. The formula BC(CORRECTED) = (1 + k x ATN) x BC(NONCORRECTED), where ATN is the attenuation and BC is black carbon, was used for correcting aethalometer data obtained from measurements at three different sites: a subway station in Helsinki, an urban background measurement station in Helsinki, and a rural station in Hyyti?l? in central Finland. The BC data were compared with simultaneously measured aerosol volume concentrations (V). After the correction algorithm, the BC-to-V ratio remained relatively stable between consequent filter spots, which can be regarded as indirect evidence that the correction algorithm works. The k value calculated from the outdoor sites had a clear seasonal cycle that could be explained by darker aerosol in winter than in summer. When the contribution of BC to the total aerosol volume was high, the k factor was high and vice versa. In winter, the k values at all wavelengths were very close to that obtained from the subway station data. In summer, the k value was wavelength dependent and often negative. When the k value is negative, the noncorrected BC concentrations overestimated the true concentrations.  相似文献   

7.
As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, NV (April–June 2013), and Hunter High School in the West Valley City area of greater Salt Lake City, UT (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low—less than 2 m/sec—both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/sec, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again.

Implications: Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway emissions even when the school was not downwind of the roadway. At the second school, which sits in an urban neighborhood away from freeways, high particle counts occurred even though solar radiation was low during wintertime conditions, meaning that exposure to high particle counts can occur throughout the year.  相似文献   


8.
The purpose of this study was to evaluate the effect of traffic volume on ambient black carbon (BC) concentration in an inner-city neighborhood "hot spot" while accounting for modifying effects of weather and time. Continuous monitoring was conducted for 12 months at the Baltimore Traffic Study site surrounded by major urban streets that together carry over 150,000 vehicles per day. Outdoor BC concentration was measured with an Aethalometer; vehicles were counted pneumatically on two nearby streets. Meteorological data were also obtained. Missing data were imputed and all data were normalized to a 5-min observational interval (n = 105,120). Time-series modeling accounted for autoregressively (AR) correlated errors. This study found that outdoor BC was positively correlated at a statistically significant level with neighborhood-level vehicle counts, which contributed at a rate of 66 +/- 10 (SE) ng/m3 per 100 vehicles every 5 min. Winds from the SW-S-SE quarter were associated with the greatest increases in BC (376-612 ng/m3). These winds would have entrained BC from Baltimore's densely trafficked central business district, as well as a nearby interstate highway. The strong influence of wind direction implicates atmospheric transport processes in determining BC exposure. Dew point, mixing height, wind speed, season, and workday were also statistically significant predictors. Background exposure to BC was estimated to be 905 ng/m3. The optimal, statistically significant representation of BC's autocorrelation was AR([1:6]) x 288 x 2016, where the short-term AR factor (lags 1-6) indicated that BC concentrations are correlated for up to 30 min, and the AR factors for lags 288 and 2016 indicate longer-term autocorrelations at diurnal and weekly cycles, respectively. It was concluded that local exposure to BC from mobile sources is substantially modified by meteorological and temporal conditions, including atmospheric transport processes. BC concentration also demonstrates statistically significant autocorrelation at several time scales.  相似文献   

9.
Measurements of real-time continuous PM2.5 black carbon (BC) concentrations were made using a single-wavelength Aethalometer (@880 nm) in three different environments, i.e., an indoor office, a residential indoor living room and an urban site, to evaluate the difference in temporal behaviors of BC particles and investigate the optical shadowing effect in the Aethalometer BC data. An empirical method was used for correcting the optical saturation effect on the original BC data obtained from the measurements at the three sites. Also, the elemental carbon (EC) concentrations from 24-h filter-based measurements of PM2.5 particles were determined using a thermal optical transmittance (TOT) method at the same urban site for comparison with the Aethalometer BC results. Transient events of BC were often observed for period of a few hours at all sites, reaching a maximum level of 27.3 μg m?3 at the urban site. The diurnal cycles of the BC concentrations observed at the two indoor environments were found to be considerably affected by the air exchange rate, occupants' behavior patterns and nearby traffic emissions. The time-series plots of the Aethalometer data showed obvious discontinuities at the filter spot change, and a rise in the apparent BC concentrations after filter tape advances. Also, the relationship between the attenuation and BC concentration was found to be non-linear at all sites. The empirical approach presented here demonstrated a definite improvement in the continuity of the BC data across the time gaps of each tape advance. The compensated BC concentration was 1.10–1.23 times greater than the raw BC data, depending on the observation sites, with the highest difference observed between the raw and compensated BC data at an indoor office near a small traffic road. The 24-h integrated EC concentration was approximately 12% higher than the original 24-h average BC concentration and 6% lower than the loading compensated BC concentration, showing that the loading compensation process accounted for the saturation effect of the filter tape.  相似文献   

10.
Atmospheric concentrations of 4-oxopentanal (4-OPA) in both gas and particulate phase were measured at the experimental forest, 200 km north of Sapporo, Japan, from August 13 to 15, 2001. 4-OPA was collected using an annular denuder sampling system and measured with a gas chromatography employing benzylhydroxyl oxime derivatization. Its gas phase concentrations ranged from 180 ng m(-3) (44 pptv) to 1570 ng m(-3) (384 pptv), whereas those in the particulate phase were from below the detection limit (25 ng m(-3)) to 207 ng m(-3). The particulate 4-OPA accounted for 28% (particle/(gas+particle)) of the total concentration as the maximum at 06:00 on August 15th (average: 10%). The particulate concentrations of 4-OPA were found to be comparable to those of pinonic acid, indicating that 4-OPA is also an important constituent of organic aerosols in the forestal atmosphere. Here, we report, for the first time, the concentrations of 4-OPA in both gas and particulate phase and its diurnal variations in the forestal atmosphere.  相似文献   

11.
Black carbon (BC), an important component ofthe atmospheric aerosol, has climatic, environmental, and human health significance. In this study, BC was continuously measured using a two-wavelength aethalometer (370 nm and 880 nm) in Rochester; New York, from January 2007 to December 2010. The monitoring site is adjacent to two major urban highways (I-490 and I-590), where 14% to 21% of the total traffic was heavy-duty diesel vehicles. The annual average BC concentrations were 0.76 microg/m3, 0.67 microg/m3, 0.60 microg/m3, and 0.52 microg/m3 in 2007, 2008, 2009, and 2010, respectively. Positive matrix factorization (PMF) modeling was performed using PM2.5 elements, sulfate, nitrate, ammonia, elemental carbon (EC), and organic carbon (OC) data from the US. Environmental Protection Agency (EPA) speciation network and Delta-C (UVBC370nm-BC880nm) data. Delta-C has been previously shown to be a tracer of wood combustion factor It was used as an input variable in source apportionment models for the first time in this study and was found to play an important role in separating traffic (especially diesel) emissions from wood combustion emissions. The result showed the annual average PM2.5 concentrations apportioned to diesel emissions in 2007, 2008, 2009, and 2010 were 1.34 microg/m3, 1.25 microg/m3, 1.13 microg/m3, and 0.97 microg/m3, respectively. The BC conditional probability function (CPF) plots show a large contribution from the highway diesel traffic to elevated BC concentrations. The measurements and modeling results suggest an impact of the US Environmental Protection Agency (EPA) 2007 Heavy-Duty Highway Rule on the decrease ofBC and PM2.5 concentrations during the study period.  相似文献   

12.
More than half of the world's population lives in cities, and their populations are rapidly increasing. Information on vertical and diurnal characterizations of volatile organic compounds (VOCs) in urban areas with heavy ambient air pollution can help further understand the impact of ambient VOCs on the local urban environment. This study characterized vertical and diurnal variations in VOCs at 2, 13, 32, 58, and 111 m during four daily time periods (7:00 to 9:00 a.m., 12:00 to 2:00 p.m., 5:00 to 7:00 p.m., and 11:00 p.m. to 1:00 a.m.) at the upwind of a high-rise building in downtown, Kaohsiung City, Taiwan. The study used gas chromatography-mass spectrometry to analyze air samples collected by silica-coated canisters. The vertical distributions of ambient VOC profiles showed that VOCs tended to decrease at greater heights. However, VOC levels were found to be higher at 13 m than at ground level at midnight from 11:00 p.m. to 1:00 a.m. and higher at 32 than 13 m between 7:00 and 9:00 a.m. These observations suggest that vertical dispersion and dilution of airborne pollutants could be jointly affected by local meteorological conditions and the proximity of pollution sources. The maximum concentration of VOCs was recorded during the morning rush hours from 7:00 to 9:00 a.m., followed by rush hours from 5:00 to 7:00 p.m., hours from 12:00 to 2:00 p.m., and hours from 11:00 p.m. to 1:00 a.m., indicating that the most VOC compounds in urban air originate from traffic and transportation emissions. The benzene-toluene-ethyl benzene-xylene (BTEX) source analysis shows that BTEX at all heights were mostly associated with vehicle transportation activities on the ground.  相似文献   

13.
The Maryland State Highway Administration (SHA) monitoring program monitored the impact of vehicular emissions on the concentrations of the fine particles smaller than 2.5 microns (PM2.5). PM2.5 concentrations were monitored in close proximity to a highway in order to determine whether traffic conditions on the roadway impact concentrations at this location. The monitoring program attempted to connect monitored concentrations with the roadway traffic exhaust or with the other sources of PM2.5. PM2.5 concentrations were collected near the Capital Beltway (I-495/I-95) in Largo, Maryland. The monitoring program was launched on May 13, 2009 and continued through the end of 2012. Two co-located monitors, one for continuous PM2.5 measurements and the other for speciation measurements, were used in this program. Meteorological and traffic information was also continuously collected at or near the monitoring site. Additionally, data from the two other monitoring locations, one at the Howard University-Beltsville, MD and one at McMillan Reservoir, DC, was used for comparison with the data collected at the SHA monitoring location. The samples collected by the speciation monitor were analyzed at the RTI and DRI Laboratories to determine the composition and the sources of the collected PM2.5 samples. Based on the apportionment analysis, the contribution of roadway sources is about 12 to 17 percent of PM2.5 at the near-road site.

Implications: PM2.5 monitoring at 150 m (approximately 500 feet) from a major highway in Maryland near Washington, DC, demonstrated that roadway traffic contributes to the total PM2.5 concentration near the roadway, but the contribution at such distance is small, in the order of 12–17% of the total.  相似文献   

14.
Near-roadway ambient black carbon (BC) and carbon monoxide (CO) concentrations were measured at two schools adjacent to a freeway and at an urban background school 2 km from the freeway to determine the change in concentrations attributable to vehicle emissions after the three-lane expansion of U.S. Highway 95 (US 95) in Las Vegas, Nevada. Between summer 2007 and summer 2008, average weekday small-vehicle volume increased by 40% ± 2% (standard error). Average weekday large-vehicle volume decreased by 17% ± 5%, due to a downturn in the economy and an associated decline in goods movement. Average vehicle speed increased from 58 to 69 mph, a 16% ± 1% increase. The authors compared BC and CO concentrations in summer 2007 with those in summer 2008 to understand what effect the expansion of the freeway may have had on ambient concentrations: BC and CO were measured 17 m north of the freeway sound wall, CO was measured 20 m south of the sound wall, and BC was measured at an urban background site 2 km south of the freeway. Between summer 2007 and summer 2008, median BC decreased at the near-road site by 40% ± 2% and also decreased at the urban background site by 24% ± 4%, suggesting that much of the change was due to decreases in emissions throughout Las Vegas, rather than only on US 95. CO concentrations decreased by 14% ± 2% and 10% ± 3% at the two near-road sites. The decrease in BC concentrations after the expansion is likely due to the decrease in medium- and heavy-duty-vehicle traffic resulting from the economic recession. The decrease in CO concentrations may be a result of improved traffic flow, despite the increase in light-duty-vehicle traffic.
ImplicationsMonitoring of BC and CO at near-road locations in Las Vegas demonstrated the impacts of changes in traffic volume and vehicle speed on near-road concentrations. However, urban-scale declines in concentrations were larger than near-road changes due to the impacts of the economic recession that occurred contemporaneously with the freeway expansion.  相似文献   

15.
Ishii S  Hisamatsu Y  Inazu K  Aika K 《Chemosphere》2001,44(4):681-690
1- and 2-Nitrotriphenylenes were found in the airborne particulate matter extracts collected in central Tokyo between the winter of 1998 and the winter of 1999. In particular, we have identified and quantified nitrotriphenylenes in the airborne particulate matter extracts collected over four consecutive 6-h periods on 2 December 1999. The concentrations of 1- and 2-nitrotriphenylene ranged from 0.04 to 0.44 and from 0.02 to 0.47 ng/m3, respectively, and the concentrations in the airborne particulate matter extracts collected during the 18:00-24:00 h time period were the highest of the four collection periods. 1-Nitropyrene and 2-nitrofluoranthene were also identified and quantified in the four 6-h samples. Although the concentrations of 1- and 2-nitrotriphenylenes were not higher than that of 2-nitrofluoranthene except during the 18:00-24:00 h time period, the concentrations were much higher than that of 1-nitropyrene during the four collection periods.The higher concentrations of 1- and 2-nitrotriphenylenes during the 18:00-24:00 h time period are presumably responsible for the high reactivity of parent triphenylene with NO2/NO3/N2O5, and high stability of 1- and 2-nitrotriphenylenes toward O3 + O2. In addition, the observed isomer distribution of nitrotriphenylenes suggested that direct emission of nitrotriphenylenes is also a source as well as their atmospheric formation.  相似文献   

16.
Black carbon (BC), a constituent of particulate matter, is emitted from multiple combustion sources, complicating determination of contributions from individual sources or source categories from monitoring data. In close proximity to an airport, this may include aircraft emissions, other emissions on the airport grounds, and nearby major roadways, and it would be valuable to determine the factors most strongly related to measured BC concentrations. In this study, continuous BC concentrations were measured at five monitoring sites in proximity to a small regional airport in Warwick, Rhode Island from July 2005 to August 2006. Regression was used to model the relative contributions of aircraft and related sources, using real-time flight activity (departures and arrivals) and meteorological data, including mixing height, wind speed and direction. The latter two were included as a nonparametric smooth spatial term using thin-plate splines applied to wind velocity vectors and fit in a linear mixed model framework. Standard errors were computed using a moving-block bootstrap to account for temporal autocorrelation. Results suggest significant positive associations between hourly departures and arrivals at the airport and BC concentrations within the community, with departures having a more substantial impact. Generalized Additive Models for wind speed and direction were consistent with significant contributions from the airport, major highway, and multiple local roads. Additionally, inverse mixing height, temperature, precipitation, and at one location relative humidity, were associated with BC concentrations. Median contribution estimates indicate that aircraft departures and arrivals (and other sources coincident in space and time) contribute to approximately 24–28% of the BC concentrations at the monitoring sites in the community. Our analysis demonstrated that a regression-based approach with detailed meteorological and source characterization can provide insights about source contributions, which could be used to devise control strategies or to provide monitor-based comparisons with source-specific atmospheric dispersion models.  相似文献   

17.
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

18.
Abstract

The sizes and concentrations of 21 atmospheric polycyclic aromatic hydrocarbons (PAHs) were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan in October and December 2005. Air samples were collected using semi-volatile sampling trains (PS-1 sampler) over 16 days for rice-straw burning and nonburning periods. These samples were then analyzed using a gas chromatograph with a flame-ionization detector (GC/FID). Particle-size distributions in the particulate phase show a bimode, peaking at 0.32–0.56 μm and 3.2–5.6 μm at the two sites during the nonburning period. During the burning period, peaks also appeared at 0.32–0.56 μm and 3.2–5.6 μm at Jhu-Shan, with the accumulation mode (particle size between 0.1 and 3.2 μm) accounting for approximately 74.1% of total particle mass. The peaks at 0.18–0.32 μm and 1.8–3.2 μm at Shin-Gang had an accumulation mode accounting for approximately 70.1% of total particle mass. The mass median diameter (MMD) of 3.99–4.35 μm in the particulate phase suggested that rice-straw burning generated increased numbers of coarse particles. The concentrations of total PAHs (sum of 21 gases + particles) at the Jhu-Shan site (Sin-Gang site) were 522.9 ± 111.4 ng/m? (572.0 ± 91.0 ng/m?) and 330.1 ± 17.0 ng/m? (or 427.5 ± 108.0 ng/m?) during burning and nonburning periods, respectively, accounting for a roughly 58% (or 34%) increase in the concentrations of total PAHs due to rice-straw burning. On average, low-weight PAHs (about 87.0%) represent the largest proportion of total PAHs, followed by medium-weight PAHs (7.1%), and high-weight PAHs (5.9%). Combustion-related PAHs during burning periods were 1.54–2.57 times higher than those during nonburning periods. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at the two sites are similar and include vehicle exhaust, coal/wood combustion, incense burning, and incineration emissions. Open burning of rice straw was estimated to contribute approximately 5.0–33.5% to the total atmospheric PAHs at the two sites.  相似文献   

19.

Background

Air samples collected on three different urban sites in East of France (Strasbourg, Besan?on, and Spicheren), from April 2006 to January 2007, were characterized to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the particulate phase (PM10) and to examine their seasonal variation, diurnal variations, and emission sources.

Results

The average concentrations of ??PAHs were 12.6, 9.5, and 8.9?ng?m?3 for the Strasbourg, Besan?on, and Spicheren sites, respectively. Strong seasonal variations of individual PAH concentrations were found at the three sampling sites, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The diurnal variations of PAH concentrations in summer presented highest concentrations during the morning (04:00?C10:00) and the evening (16:00?C22:00) times, indicating the important contribution from vehicle emissions, in the three sampling sites. Furthermore, the ratio of BaP/BeP suggests that the photochemical degradation of PAHs can suppress their concentrations in the midday/afternoon (10:00?C16:00), time interval of highest global irradiance. In winter, concentrations of PAH were highest during the evening (16:00?C22:00) time, suggesting that domestic heating can potentially be an important source for particulate PAH, for the three sampling sites.

Conclusion

Diagnostic ratios were used to identify potential sources of PAHs. Results showed that vehicle emissions may be the major source of PAHs, especially in summer, with a prevalent contribution of diesel engines rather than gasoline engines at the three sites studied, independently of the seasons.  相似文献   

20.
Abstract

We evaluated day-of-week differences in mean concentrations of ozone (O3) precursors (nitric oxide [NO], nitrogen oxides [NOx], carbon moNOxide [CO], and volatile organic compounds [VOCs]) at monitoring sites in 23 states comprising seven geographic focus areas over the period 1998– 2003. Data for VOC measurements were available for six metropolitan areas in five regions. We used Wednesdays to represent weekdays and Sundays to represent weekends; we also analyzed Saturdays. At many sites, NO, NOx, and CO mean concentrations decreased at all individual hours from 6:00 a.m. to 3:00 p.m. on Sundays compared with corresponding Wednesday means. Statistically significant (p < 0.01) weekend decreases in ambient concentrations were observed for 92% of NOx sites, 89% of CO sites, and 23% of VOC sites. Nine-hour (6:00 a.m. to 3:00 p.m.) mean concentrations of NO, NOx, CO, and VOCs declined by 65, 49, 28, and 19%, respectively, from Wednesdays to Sundays (median site responses). Despite the large reductions in ambient NOx and moderate reductions in ambient CO and VOC concentrations on weekends, ozone and particulate matter (PM) nitrate did not exhibit large changes from week-days to weekends. The median differences between Wednesday and Sunday mean ozone concentrations at all monitoring sites ranged from 3% higher on Sundays for peak 8-hr concentrations determined from all monitoring days to 3.8% lower on Sundays for peak 1-hr concentrations on extreme-ozone days. Eighty-three percent of the sites did not show statistically significant differences between Wednesday and weekend mean concentrations of peak ozone. Statistically significant weekend ozone decreases occurred at 6% of the sites and significant increases occurred at 11% of the sites. Average PM nitrate concentrations were 2.6% lower on Sundays than on Wednesdays. Statistically significant Sunday PM nitrate decreases occurred at one site and significant increases occurred at seven sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号