首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Managing water for life   总被引:2,自引:2,他引:0  
Water is essential for life. In spite of the entire engineering infrastructure devoted to the treatment, regulation and beneficial uses of water, occasionally sufficient quantities and qualities of water become scarce. When this happens, just how do we decide how much less water to allocate to all of us and the activities we engage in to sustain and enhance our quality of life? This paper addresses some of the complexities of answering such a question, especially as society increasingly recognizes the need to provide flow regimes that will maintain healthy aquatic and floodplain ecosystems that also impact the economic, physical and even the spiritual quality of our lives. For we depend on these ecosystems to sustain our wellbeing. We are indeed a part of our ecosystems. We depend upon on aquatic ecosystems to moderate river flow qualities and quantities, reduce the extremes of floods and droughts, reduce erosion, detoxify and decompose waterborne wastes, generate and preserve flood plain soils and renew their fertility, regulate disease carrying organisms, and to enhance recreational benefits of river systems. This question of deciding just how much water to allocate to each water user and for the maintenance of viable aquatic ecosystems, especially when there is not enough, is a complex, and largely political, issue. This issue is likely to become even more complex and political and contentious in the future as populations grow and as water quantities and their qualities become even more variable and uncertain.  相似文献   

2.
3.
Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award‐winning restoration projects in Australasia and worldwide; and in the peer‐reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award‐winning ecological restoration projects, <17% involved human use of restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support.  相似文献   

4.
Formal engagement of indigenous peoples in conservation is increasing globally and leads to multiple benefits to communities while contributing to national and international biodiversity goals and obligations. This and ongoing declines in biodiversity have led to calls to increase opportunities for indigenous people to engage in managing their estates. However, there is no overarching understanding of indigenous peoples’ involvement in conservation, which limits the identification of new opportunities. We amalgamated information across governments and large nongovernmental organizations in the megadiverse country of Australia to quantify the involvement of indigenous people in management of threatened species. We identified 153 Australian‐based projects undertaken by different indigenous groups around the nation in 2015 and 2016 that included explicit funds for management of threatened species or threatened ecosystems. Most were in remote parts of western and northern Australia. Almost one‐quarter of all threatened animals and 2% of threatened plants were the subject of some formal conservation action by indigenous people. Occurrence records for 1574 threatened species showed that 823 (89.2%) of 923 species recorded on indigenous peoples’ lands were not listed in management projects. This gap may represent new opportunities for conservation initiatives. Because at least 59.5% of Australia's threatened species occur on indigenous peoples’ lands, efforts to build appropriate and effective indigenous conservation alliances are vital. However, it is also important to recognize that threatened species are part of complex social, ecological, economic and cultural systems, and to achieve successful outcomes requires consideration of indigenous peoples’ priorities, rights, and obligations and relationships with their traditionally owned land and sea.  相似文献   

5.
Rich PM  Breshears DD  White AB 《Ecology》2008,89(2):342-352
Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody-herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale pi?on pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.  相似文献   

6.
Hamann A  Wang T 《Ecology》2006,87(11):2773-2786
A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.  相似文献   

7.
Strategies to reduce, halt, and reverse global declines in marine biodiversity are needed urgently. We reviewed, coded, and synthesized historical and contemporary marine conservation strategies of the Kitasoo/Xai'xais First Nation in British Columbia, Canada to show how their approaches work. We assessed whether the conservation actions classification system by the Conservation Measures Partnership was able to encompass this nation's conservation approaches. All first-order conservation actions aligned with the Kitasoo/Xai'xais First Nation's historical and contemporary marine conservation actions; hereditary chief management responsibility played a key role. A conservation ethic permeates Kitasoo/Xai'xais culture, and indigenous resource management and conservation existed historically and remains strong despite extreme efforts by colonizers to suppress all indigenous practices. The Kitasoo/Xai'xais's embodiment of conservation actions as part of their worldview, rather than as requiring actions separate from everyday life (the norm in nonindigenous cultures), was missing from the conservation action classification system. The Kitasoo/Xai'xais are one of many indigenous peoples working to revitalize their governance and management authorities. With the Canadian government's declared willingness to work toward reconciliation, there is an opportunity to enable First Nations to lead on marine and other conservation efforts. Global conservation efforts would also benefit from enhanced support for indigenous conservation approaches, including expanding the conservation actions classification to encompass a new category of conservation or sacredness ethic.  相似文献   

8.
森林土壤种子库研究进展   总被引:1,自引:0,他引:1  
杜有新  曾平生 《生态环境》2007,16(5):1557-1563
土壤种子库与物种多样性存在密切相关性,森林土壤种子库是植被天然更新的物质基础。文章阐述了森林土壤种子库的内涵、森林生态系统土壤种子库的基本特征及其主要研究方法,探讨了影响种子库的基本因素及当前极为关注的热点问题。在受损森林生态系统目标树种培养、植被群落快速恢复和生态系统科学管理等领域仍存在一些理论和实践急待解决的问题,如随着群落进展演替土壤种子库种子数量在增加而质量却在逐渐下降,面临如何解决生态系统健康稳定发育和物种多样性长期维持问题。文章认为今后应加强土壤种子库与生物多样性保护、防止外来物种入侵乡土物种利用及对全球变化的响应等领域的研究工作,以期为从事森林土壤种子库研究和退化森林植被群落恢复实践提供理论指导。  相似文献   

9.
Evaluating tributary restoration potential for Pacific salmon recovery.   总被引:1,自引:0,他引:1  
Although habitat restoration can play a key role in the conservation of imperiled species, for animals that demonstrate long migrations and complex life histories, reliance on physical restoration of isolated habitat patches comes with considerable uncertainty. Nevertheless, within freshwater ecosystems, stream restoration has become a major conservation focus, with millions of dollars spent annually on efforts aimed at recovering degraded habitat and imperiled riverine species. Within this context, we addressed fundamental uncertainties of the focus on tributary restoration for recovery of salmon: (1) Is there potential for improving habitat in tributaries? (2) What magnitude of early survival improvement can be expected based on stream restoration? and (3) Will incremental increases in early survival be sufficient to ensure viability overall? We combined simple mechanistic habitat models, population viability measures, and categorical filters to quantify "restoration potential," expressed as increased total life-cycle survival in response to restored tributary condition, across 32 populations composing five major population groups (MPG). A wide gap remains between how much survival improvement is needed vs. what is likely to occur; restoration potential meets the necessary minimum increase needed for only four populations within one MPG. The remaining populations (84%, 4 MPG) still fall far below the survival increase needed for future viability. In addition, across all populations and groups, a 171% increase (on average) in total life-cycle survival is needed; only approximately 106% appears possible. A recovery strategy for these salmon that relies largely on tributary restoration to mitigate for known mortality imposed at other life stages (e.g., migration through hydropower dams) is risky with a low probability of success. We demonstrate an approach for completing an a priori evaluation of restoration potential linked to population viability, such that habitat restoration efforts can be biologically prioritized and scarce resources can be allocated to efforts with the greatest potential and the least amount of risk, in terms of meeting conservation and recovery goals.  相似文献   

10.
An important consideration in conservation and biodiversity planning is an appreciation of the condition or integrity of ecosystems. In this study, we have applied various machine learning methods to the problem of predicting the condition or quality of the remnant indigenous vegetation across an extensive area of south-eastern Australia—the state of Victoria. The field data were obtained using the ‘habitat hectares’ approach. This rapid assessment technique produces multiple scores that describe the condition of various attributes of the vegetation at a given site. Multiple sites were assessed and subsequently circumscribed with GIS and remote-sensed data.  相似文献   

11.
We investigate a community of independent logistically growing populations under a common harvesting effort which leads to the total maximum sustainable yield (TMSY). It is surprising that in the case of two populations with approximately equal carrying capacities, TMSY is reached while both populations persist, although their biotic potential may differ substantially. In general, however, TMSY with a common harvesting effort implies suboptimal fishing of some populations, overfishing of others and extinction of the rest of the populations. Since extinction of populations is a rule rather than an exception and since a community of independent populations is more robust than an ecosystem with multiple trophic levels, we call for urgent retraction of all legal documents advocating MSY in ecosystems.  相似文献   

12.
Abstract:  We explored the interaction of science and society in attempts to restore impaired marine ecosystems in Channel Islands National Park and National Marine Sanctuary, California. Deteriorating resource conditions triggered a community's desire to change public policy. Channel Islands National Park, one of 40 marine protected areas in the U.S. National Park System, was proclaimed a national monument in 1938 and expanded substantially in 1980 by an act of Congress. Collapse of marine life populations and loss of 80% of the giant kelp (Macrocystis pyrifera) forests in the park between 1980 and 1998 showed that habitat and water quality protection alone had not secured sustainable ocean ecosystems or fisheries. The failed fishery management strategies and practices prompted formal community and agency requests in 1998 for a network of reserves protected from direct fishing impacts to serve as marine recovery areas. A 2-year attempt to build a community consensus based on science for a reserve network successfully identified recovery goals for fisheries, biodiversity, education, economics, and heritage values. Nevertheless, the community group failed to garner unanimous support for a specific reserve network to achieve those common goals. The group submitted a recommendation, supported by 14 of 16 members, to state and federal authorities in 2001 for action in their respective jurisdictions. California adopted the half of the network in state waters in 2003. This process exposed the socioeconomic factors involved in the design of marine protected areas that can be negotiated successfully among groups of people and factors determined by nature that cannot be negotiated. Understanding the differences among the factors was crucial in reaching consensus and changing public policy.  相似文献   

13.
Abstract: Forests ecosystems, with their stratified structure, provide a diversity of habitats for a variety of animals. The influence of acidic deposition on forests is being studied intensely, and preliminary research indicates that some forest resources are being affected. These effects and the potential for subsequent change in forest structure and function imply that an impact on the wildlife inhabitants is occurring. In most cases, these impacts are not direct, but instead reflect modifications of habitat and changes in trophic relationships. Detecting changes distinguishable from normal spatiotemporal variations in animal populations is difficult. The net result over time may be reductions or shifts in populations and species composition. This paper provides an overview of current information on the impact of acidic deposition on forest resources as it relates to animals.  相似文献   

14.
SUMMARY

In recent years, indigenous tenure over forest lands has emerged as a means to conserve forests while recognizing indigenous rights. There is concern, however, that indigenous reserves may not be an appropriate policy tool for sustained forest conservation. Our research examined how recognition of indigenous common-property rights has controlled agricultural expansion and conserved forests in Bosawas Biosphere Reserve, Nicaragua. We used satellite imagery with empirical data gathered in the field on land-use institutions, population pressures, and land-use practices to compare whether indigenous communities under territorial management or public management are better able to (1) control the ‘fast threat’ of frontier expansion and (2) address the long-term ecological threats posed by indigenous land-use practices and institutional changes in the region. Our findings are that indigenous residents who share common-property rights over their territories are better able to control agricultural expansion than are indigenous residents living on public lands. With respect to the long-term threats to the region, a series of simulations of possible land-use pressures demonstrate that the enforcement of territorial boundaries and further development of indigenous forest management rules will prove crucial in determining land-use capacity and deforestation over the next 50 years.  相似文献   

15.
Recent emphasis on a holistic view of natural systems and their management is associated with a growing appreciation of the role of human values in these systems. In the past, resource management has been perceived as a dichotomy between extraction (harvest) and nonconsumptive use, but this appears to be an oversimplified view of natural-cultural systems. The recreational fishery for Yellowstone cutthroat trout ( Oncorhynchus clarki bouvieri ) in Yellowstone National Park is an example of the effects of management on a natural-cultural system. Although angler harvest has been drastically reduced or prohibited, the recreational value of Yellowstone cutthroat trout estimated by angling factors (such as landing rate or size) ranks above that of all other sport species in Yellowstone National Park. To maintain an indigenous fishery resource of this quality with hatchery propagation is not economically or technically feasible. Nonconsumptive uses of the Yellowstone cutthroat trout including fish-watching and intangible values, such as existence demand, provide additional support for protection of wild Yellowstone cutthroat trout populations. A management strategy that reduces resource extraction has provided a means to sustain a quality recreational fishery while enhancing values associated with the protection of natural systems.  相似文献   

16.
17.
Experiences of biological monitoring with feral pigeons over a 12-year period in the cities of Halle, leipzig and Saarbrücken, and in rural areas of the Saarland and Schleswig-Holstein, show how to combine the management of feral pigeon populations with scientific questions. Especially the eggs of feral pigeons are suitable for environmental observation. Their advantage is, to show both concentrations of substances and their effects. In addition, there is almost no alternative in urban ecosystems by the use of other specimens. Requirements on standard operation procedures for sampling and sample treatment are presented. Examples of significant differences in analytical and biometric information between the observed areas and trends over the 12-year monitoring period with the use of pigeon eggs are presented. In specially constructed pigeon houses (pigeonry) with nesting cells, pigeon eggs can permanently be used for long term monitoring studies. At the same time, the possibility for the control and regulation of population health and desity is given.  相似文献   

18.
Despite their ubiquity and importance to intertidal ecosystems, information is currently lacking regarding the genetic diversity of trematode parasites within coastal organisms and the distribution of their genetic variation among intertidal habitats. In this study, we quantified the clonal diversity of the coastal marine trematode Maritrema novaezealandensis within Zeacumantus subcarinatus snail hosts from three coastal bays in Otago Harbour, New Zealand, using five microsatellite loci to determine if differences exist in the frequency of occurrence of multi-clone infections. In addition, we examined gene flow among M. novaezealandensis collected from the three bays. The frequency of mixed-clone infections varied fourfold among bays and no genetic differentiation was detected among intertidal bays. Across the coastal bays studied, M. novaezealandensis comprises a single population that is potentially infecting multiple Z. subcarinatus populations with varying life history traits.  相似文献   

19.
Social animals acquire information on predator identities through social learning, where individuals with no prior experience learn from experienced members of the group. However, a large amount of uncertainty is often associated with socially acquired information especially in cases of cross-species learning. Theory predicts that socially acquired information from heterospecifics should take more repetitions to develop in complex ecosystems where the number of participants is greater. Our work focuses on coral reef fish as their social and communal lifestyles, along with their complex life histories, make them an ideal model to test for socially acquired predator recognition. Specifically, we tested if Pomacentrus wardi were capable of transmitting the recognition of an unknown predator, Pseudochromis fuscus, to closely related Pomacentrus moluccensis and phylogenetically distant Apogon trimaculatus. Individuals of both species were able to learn the predator's identity from experienced P. wardi based on a single conditioning event. It is somewhat surprising how fast social learning occurred particularly for the distantly related cardinalfish. This study demonstrates the widespread nature of social learning as a method of predator recognition in biologically complex ecosystems, and highlights that the benefits of responding to uncertain information may override the costs associated with lost foraging opportunities.  相似文献   

20.
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号