首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Effects of controlled nutrient additions on a prairie stream were studied using a before‐after‐control‐impact paired design. The site is in a reference condition with low soluble nitrate (NO3) and phosphate (soluble reactive phosphorus [SRP]) in summer (3 μg NO3‐N/L, 4 μg SRP/L). Nutrients were added to two reaches over the growing season at two levels (Low Dose — 39 μg NO3‐N/L and 4.4 SRP/L; High Dose — 119 μg NO3‐N/L and 15.6 μg SRP/L). Continuously measured dissolved oxygen (DO) and changes in aquatic flora were compared to an upstream Control. Enrichment led microalgae and filamentous algae to increase in density, areal coverage, and thickness, and the magnitude of the changes were largely concordant with dosing (more in the High Dose); algal growth also suppressed macrophytes in the High Dose. Enrichment caused significant increases in diel DO swings whose magnitudes were consistent with dosing level. In the High Dose, benthic algae flourished in the growing season and then senesced en masse in fall. The decomposing algae led DO to crash (ca. 0 mg/L on the bottom), but DO impacts were out‐of‐sync with peak algal growth and photosynthesis, which occurred weeks earlier. This finding provides a plausible explanation as to why high DO delta in streams impacts aquatic life even when concurrently measured DO is not low. When DO crashed, DO was longitudinally patchy, some areas having low DO near the bottom, others near saturation. Geomorphology and exposure to wind may have caused this pattern.  相似文献   

2.
ABSTRACT: Productivity measurements of organisms attached to artificial substrates ranged from 6.5–7.6 mg C/m2/hr and were 17-65% greater in stirred bottles (simulated flow) than under static conditions. Carbon-14 was used to determine the effect of current on the primary productivity of these organisms in six artificial streams at the Flowing Streams Laboratory on the Savannah River Plant (U.S. Energy Research and Development Administration, Aiken, South Carolina, U.SA.). Seasonal changes in dominant organisms were monitored from June 1973 to March 1974. Estimates of productivity, accumulated biomass, and levels of chlorophyll a were compared for possible correlation. Production of chlorophyll a ranged from 50 to 381 mg/m2, and accumulated biomass ranged from 45 to 181 g/m2 on the artificial substrates (glass microscope slides) during the period of study. Productivity of attached organisms was generally an order of magnitude greater than productivity of phytoplankton or tychoplankton. The consistently higher productivity in simulated flowing systems than in static systems tends to cast some doubt on values obtained when lotic communities have been enclosed or isolated in chambers or bottles without inducing a current or stirring action.  相似文献   

3.
Diel (24-h) cycling of dissolved O2 (DO) in rivers is well documented, but evidence for coupled diel changes in DO and nitrogen cycling has only been demonstrated in hypereutrophic systems where DO approaches zero at night. Here, we show diel changes in N2O and DO concentration at several sites across a trophic gradient. Nitrous oxide concentration increased at night at all but one site in spring and summer, even when gas exchange was rapid and minimum water column DO was well above hypoxic conditions. Diel N2O curves were not mirror images of DO curves and were not symmetrical about the mean. Although inter- and intrasite variation was high, N2O peaked around the time of lowest DO at most of the sites. These results suggest that N2O must be measured several times per diel period to characterize curve shape and timing. Nitrous oxide concentration was not significantly correlated with NO3- concentration, contrary to studies in agricultural streams and to the current United Nations Intergovernmental Panel for Climate Change protocols for N2O emission estimation. The strong negative correlation between N2O concentration and daily minimum DO concentration suggested that N2O production was limited by DO. This is consistent with N2O produced by nitrite reduction. The ubiquity of diel N2O cycling suggests that most DO and N2O sampling strategies used in rivers are insufficient to capture natural variability. Ecosystem-level effects of microbial processes, such as denitrification, are sensitive to small changes in redox conditions in the water column even in low-nutrient oxic rivers, suggesting diel cycling of redox-sensitive compounds may exist in many aquatic systems.  相似文献   

4.
ABSTRACT: The Central Nebraska Basins is one of 60 study units in the National Water-Quality Assessment Program of the U.S. Geological Survey. The study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Agriculture is the predominant land use in the study unit, with only eight urbanized communities exceeding a population of 10,000. Water samples were collected from selected streams in the study unit during 1993–1995. The data were used to assess the distribution of nitrogen compounds and phosphorus in the streams and to relate the concentrations of these constituents to environmental settings. This article focuses on dissolved nitrate and orthophosphate. Dissolved nitrate concentrations were highest (90th percentiles were less than 7.0 milligrams per liter as nitrogen) in areas with extensive cropland and pasture, where chemical fertilizers are intensively applied. Synoptic measurements conducted in March and August 1994 indicate that relatively little residual fertilizer, as nitrate, applied during a single crop-growing season enters streams. Dissolved nitrate concentrations showed a seasonal pattern, being highest during winter months and lowest during the late spring and summer. Dissolved orthophosphate concentrations tended to be low across the study unit, 90 percent of all analyses did not exceed 1.7 milligrams per liter as phosphorus.  相似文献   

5.
ABSTRACT Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swamp drainage system over an eight-year period. Three changes in the ash basin settling system were made between mid- 1973 and January 1982. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic Ph excursions (mean of 5.5, extreme of 3.5) after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH, along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long, chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the U.S. Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. From collective elemental exposures in the receiving system, bioconcentration factors in macrophytes, invertebrates and fish were generally lower than those reported in the literature for laboratory, single elemental concentrations. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquitofish populations recovered within one year afterward.  相似文献   

6.
Compensatory mitigation of impacted streams and wetlands has increased over the past two decades, with the associated industry spending over US$2.9 billion in aquatic restoration annually. Despite these expenditures, evaluations by the National Research Council and U.S. Government Accountability Office have provided evidence that compensatory mitigation practices are failing to protect aquatic resource functions and services, and vague federal policy and inadequate evaluation of compensatory mitigation projects are to blame. To address these weaknesses, an update to federal regulations on compensatory mitigation was released in 2008. Additionally, the 2012 Reissuance of Nationwide Permits, some of which affects compensatory stream mitigation, was recently published. Current policy, as reflected in these documents, still uses nonspecific language to direct compensatory stream mitigation leaving most implementation decisions to the local U.S. Army Corps of Engineers district. The majority of federal mitigation policy has focused on wetland compensation, with other aquatic resources receiving less attention (e.g., streams). In this article, weaknesses of current policy are discussed, as are suggested policy changes to minimize the loss of stream ecosystem functions and services. Compensatory mitigation policy should clearly define key terms, incorporate adaptive management procedures, and provide guidelines for determining mitigation costs and compensation ratio requirements.  相似文献   

7.
ABSTRACT: The concentration of 10 [titanium (Ti), manganese (Mn), copper (Cu), chromium (CR), zinc (Zn), arsenic (As), selenium (Se), cobalt (Co), cadmium (Cd), and mercury (Hg)] toxic elements were measured in the water, benthic sediment, plants, invertebrates, and vertebrates of an ash basin and its drainage system at a coal-fired power plant of the Savannah River Project, Aiken, S.C., over a period of two years. During 12 months of this period the basin was essentially filled and little settling of ash occurred. In the remaining 12 months, dredging had been completed, adequate settling occurred and most of the effluent turbidity was removed. All elements were more concentrated in sediment and biota than in water, and five (Mn, Cu, As, Zn, and Se) were biomagnified by at least one biotic component as compared to concentration in benthic sediment. Plants had high accumulations of Ti, Mn, As, and Hg; invertebrates had high accumulations of Co, Hg, Cu, Cr, Cd, and As; and vertebrates greatly biomagnified Se and Zn. The streamlined biotic community of the system accomplished major removal of Mn, Zn, As, Se, and Cd from the effluent. The magnitude of bioaccumulation of Ti, Mn, Zn, As, Se, Cd, and Hg was increased during the period of adequate settling in the basin.  相似文献   

8.
Abstract: Sediment oxygen demand (SOD) is believed to be an important process affecting dissolved oxygen (DO) concentrations in blackwater streams of the southeastern coastal plain. Because very few data on SOD are available, it is common for modelers to take SOD values from the literature for use with DO models. In this study, SOD was measured in seven blackwater streams of the Suwannee River Basin within the Georgia coastal plain for between August 2004 and April 2005. SOD was measured using four in situ chambers and was found to vary on average between 0.1 and 2.3 g O2/m/day across the seven study sites throughout the study period. SOD was found to vary significantly between the watersheds within the Suwannee River Basin. However, land use was not found to be the driving force behind SOD values. Statistical analyses did find significant interaction between land use and watersheds suggesting that an intrinsically different factor in each of the watersheds may be affecting SOD and the low DO concentrations. Further research is needed to identify the factors driving SOD dynamics in the blackwater streams of Georgia’s coastal plain. Results from this study will be used by the Georgia Department of Natural Resources – Environmental Protection Division as model input data for the development and evaluation of DO total maximum daily loads in the Georgia coastal plain.  相似文献   

9.
A mechanistic understanding of the effects of nutrient enrichment in lotic systems has been advanced over the last two decades such that identification of management thresholds for the prevention of eutrophication is now possible. This study describes relationships among primary nutrients (phosphorus and nitrogen), benthic chlorophyll a concentrations, daily dissolved oxygen (DO) concentrations, and the condition of macroinvertebrate and fish communities in small rivers and streams in Ohio, USA. Clear associations between nutrients, secondary response indicators (i.e., benthic chlorophyll and DO), and biological condition were found, and change points between the various indicators were identified for use in water quality criteria for nutrients in small rivers and streams (<1300 km2). A change point in benthic chlorophyll a density was detected at an inorganic nitrogen concentration of 0.435 mg/l (±0.599 SD), and a total phosphorus (TP) concentration of 0.038 mg/l (±0.085 SD). Daily variation in DO concentration was significantly related to benthic chlorophyll concentration and canopy cover, and a change point in 24-h DO concentration range was detected at a benthic chlorophyll level of 182 mg/m2. The condition of macroinvertebrate communities was related to benthic chlorophyll concentration and both minimum and 24-h range of DO concentration. The condition of fish communities was best explained by habitat quality. The thresholds found in relationships between the stressor and the response variables, when interpreted in light of the uncertainty surrounding individual change points, may now serve as a framework for nutrient criteria in water quality standards.  相似文献   

10.
ABSTRACT: Effects of aquatic macrophytes are not considered in most standard water quality models. This study used field measurements and water quality models to help determine the effects of aquatic macrophytes on dissolved oxygen (DO) concentrations in a shallow tailwater reservoir. Installation of a hydropower plant and macrophytes (primarily Potamogeton and Chara) in a large shallow portion of the lake are possible causes of reduced DO levels in the tailwater reservoir. A water quality model (WASP5) was used to quantify the various DO sources and sinks and to evaluate the effects of the hydropower operations on DO levels in the lake. It was found that the macrophytes in Lake Ogallala had a significant effect on the DO levels in the lake. At an average macrophyte density of about 6,360 g/m2 (wet weight) in 2000, the DO fluctuated daily from about 3 mg/l to about 12 mg/l. At an average macrophyte density of about 2,120 g/m2 (wet weight) in 2002, the DO fluctuated from about 5 mg/l to about 9 mg/l daily. The model predicted that the DO would remain near 5 mg/l without macrophytes. The photo‐synthetic and respiration rates developed in the model (4.4 mg/g‐hr and 1.4 mg/g‐hr, respectively) agree well with literature values.  相似文献   

11.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

12.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

13.
Abstract: We evaluated the impact of land cover on fish assemblages by examining relationships between stream hydrology, physicochemistry, and instream habitat and their association with fish responses in streams draining 18 watersheds of the Lower Piedmont of western Georgia. Several important relationships between land use and physicochemical, hydrological, and habitat parameters were observed, particularly higher frequency of spate flows, water temperatures, and lower dissolved oxygen (DO) with percentage impervious surface (IS) cover, higher habitat quality with percentage forest cover, and elevated suspended solid concentrations with percentage pasture cover. Fish assemblages were largely explained by physicochemical and hydrological rather than habitat variables. Specifically, fish species diversity, richness, and biotic integrity were lower in streams that received high frequency of spate flows. Also, overall fish assemblage structure as determined by nonmetric multidimensional scaling was best described by total dissolved solids (TDS) and DO, with high TDS and low DO streams containing sunfish‐based assemblages and low TDS and high DO streams containing minnow‐based assemblages. Our results suggest that altered hydrological and physicochemical conditions, induced largely by IS, may be a strong determinant of fish assemblage structure in these lowland streams and allow for a more mechanistic understanding of how land use ultimately affects these systems.  相似文献   

14.
Microplastics (MPs) are frequently regarded as environmental and biota contaminants. Yet, research on the accumulation of MPs in living entities, particularly aquatic insects that serve as food resources in the aquatic food chain, is limited. This study to investigate the accumulation of MPs in aquatic insects from water and sediment in an Egyptian wastewater basin. Four typical freshwater insect groups were used. The highest MP load per gram wet weight was reported by collector-gatherers (Chironomus sp. and Hydrophilus sp.), followed by collector-filterers (Culex sp.) with the second highest MP load. However, Predators (Aeshna sp.) had the lowest values. Also, the present results showed a reduction in the number of MPs in all insect taxa tested after a 24 h depuration time, with differences in the observed egestion ability. The mean number of MPs per individual significantly reduced after 24 h in both Chironomus sp. and Culex sp. larvae, where 53% and 40% of MPs particles were ejected from them, respectively. However, the ability of MP egestion decreases in Aeshna sp. nymph (25%), and the lowest proportion of ejection was observed in Hydrophilus sp. adults (9%). Polyethylene terephthalate fibers were the most abundant type of MP in both sediment and water, followed by fragments (polyethylene and polypropylene). Yet, only polyester fibers were detected in the various insect species. The average length of fibers in the various insects was somewhat shorter than in the surrounding environment. The current study reveals that MP ingestion by aquatic insects is not always related to levels of pollution in the environment, since other factors such as feeding strategies may play a role in MP ingestion. Based on these observations, further studies should be carried out on studies on toxicological impacts of MPs on freshwater/aquatic biota.  相似文献   

15.
The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor’s effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either “good” (i.e., reference) or “poor” (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.  相似文献   

16.
ABSTRACT: Total culturable heterotrophic bacteria in a coal ash basin and drainage system were monitored over a period of two years. In the first year heavy (bottom) ash was sluiced to the basin resulting in a pH of 6.5. During the second year fly ash was precipitated and added to the sluice lowering the basin pH to 4.6. Sulfate concentrations during 1975 ranged from 16–73 ppm (mean 33) and in 1976 from 44–88 ppm (mean 72). Mean annual basin temperatures were 28.8 and 26.0 C, respectively. Approximately 1500 m in the receiving swamp below the basin, mean pH and temperature were 6.8 and 22.2 C for the first year, and 5.4 and 22.1 C for the second. Total culturable bacteria and diversity (colony types) were reduced at all sampling stations by 44 and 30 percent, respectively, whereas the percentage of the population comprised of chromagenic bacteria increased by 51 percent at the lower pH; Data indicated the pH had a greater effect than did water temperature when temperature was within the range of 15–25 C. The predominant genera within the system in the first year were Bacillus, Sarcina, Achromobacter, Flavobacterium, and Pseudomonas. In the second year, at the lower pH, predominant genera were Pseudomonas, Flavobacterium, Chromobacterium, Bacillus, and Brevibacterium.  相似文献   

17.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   

18.
ABSTRACT: The uptake of ten chemical elements was measured in water, sediment, fly ash, and the major biotic components of an ash basin drainage system. The biota tested represent several trophic levels observed in the settling basin and receiving swamp of the system. Concentrations were measured by neutron activation (NAA) in the major biotic groups including aquatic bacteria, algae, macrophytes, midges, dragonflies, crayfish, tadpoles, and fish. Only three elements (Cu, Zn, Cd) were more highly concentrated in water from a nearby unpolluted stream than in the fly ash effluent. Sediment concentrations of all elements were highest in the ash drainage system with Al and Fe being consistently highest. Among the biota, Hydrodictyon sp. and Lemna perpusilla had the highest concentrations of Al and Fe while other macrophytes were the major accumulators of Mn and Ba. Invertebrates generally concentrated high amounts of Cu and Zn although Cd and Hg were accumulated most by crayfish. Selenium was selectively concentrated by bacteria, crayfish (Procambarus sp.) and mosquitofish (Gambusia afflnis). Consequences of elemental concentrations in sediment and in specific trophic level groups are discussed.  相似文献   

19.
Worldwide shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S., specifically the Allegheny Plateau in Pennsylvania, West Virginia, Ohio, and Kentucky, is experiencing rapid exploration. Using Pennsylvania as a proxy for regional development across the Plateau, we examine land cover change due to shale-gas exploration, with emphasis on forest fragmentation. Pennsylvania’s shale-gas development is greatest on private land, and is dominated by pads with 1–2 wells; less than 10 % of pads have five wells or more. Approximately 45–62 % of pads occur on agricultural land and 38–54 % in forest land (many in core forest on private land). Development of permits granted as of June 3, 2011, would convert at least 644–1072 ha of agricultural land and 536–894 ha of forest land. Agricultural land conversion suggests that drilling is somewhat competing with food production. Accounting for existing pads and development of all permits would result in at least 649 km of new road, which, along with pipelines, would fragment forest cover. The Susquehanna River basin (feeding the Chesapeake Bay), is most developed, with 885 pads (26 % in core forest); permit data suggests the basin will experience continued heavy development. The intensity of core forest disturbance, where many headwater streams occur, suggests that such streams should become a focus of aquatic monitoring. Given the intense development on private lands, we believe a regional strategy is needed to help guide infrastructure development, so that habitat loss, farmland conversion, and the risk to waterways are better managed.  相似文献   

20.
Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号