首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

2.
ABSTRACT: Harvesting 29-year-old loblolly pine (Pinus taeda L.) plantations on six small catchments in the Coastal Plain of west Tennessee caused variable but generally minor increases of storm-flow volumes during the four years following harvest. The increases were primarily associated with decreases of rainfall interception rather than with soil disturbance. Harvesting had no effect on stormflow volumes in six nearby catchments of 37-year-old loblolly pine to which the same treatments were applied. Postharvest increases of flow-weighted sediment concentrations averaged higher for the catchments with greater flows at both locations. During the fourth through eighth years after harvest, average sediment concentrations for harvested catchments at each location approximated closely the base rate of 62 mg L-1 previously defined for undisturbed pine types. Thus, relatively minor postharvest increases of stormflow volumes in the six 29-year-old plantations and increases of sediment concentrations in all 12 catchments were limited to about four years. Nevertheless, because of potential channel erosion, the findings confirm the need to extend stream management zones well up into drainages with intermittent and ephemeral flows wherever water quality is a concern. Despite certain undesirable effects of logging (baring of mineral soil, decreased weight and depth of forest floor, increased soil bulk density), the results demonstrate the high resilience developed by pine planted on severely eroded sites in the southern Coastal Plain.  相似文献   

3.
ABSTRACT: This project analyzes suspended sediment flux through the upper Barataria basin in Louisiana during the winter season defined from November through April. The Barataria is a shallow coastal estuary located in southeastern Louisiana. The controls exerted by environmental parameters (such as wind or atmospheric pressure) in wetlands‐shallow bay ecosystems on transport of water and sediment were examined. Water samples were taken at a bayou (which serve as the inlet for flow to the estuary) on a regular basis. These samples were analyzed for total suspended solids and volatile suspended solids. Velocity, depth, temperature, salinity, conductivity, and meteorological measurements were all recorded at the time of each sampling. A multi‐parameter field probe was employed to continually monitor turbidity, water level, conductivity, and temperature during frontal events. These data were used in a regression analysis to examine the factors that drive carbon flux in the region. Investigations have determined that synoptic climate and prevailing weather conditions explain much of the variations in water levels, flow circulation patterns, salinity, and suspended sediment. Relatively small amounts of sediment appear to leave the estuary during normal tidal activity, but winter storm fronts result in significant fluxes of sediment in both up‐basin and down‐basin directions.  相似文献   

4.
5.
ABSTRACT: Ground water samples were collected from 30 wells located in, or directly down gradient from, recharge areas of the Eutaw aquifer in Montgomery, Alabama. The major ion content of the water evolves from calcium‐sodium‐chloride‐dominated type in the recharge area to calcium‐bicarbonate‐dominated type in the confined portion of the aquifer. Ground water in the recharge area was under saturated with respect to aluminosilicate and carbonate minerals. Ground water in the confined portion of the aquifer was at equilibrium levels for calcite and potassium feldspar. Dissolved oxygen and nitrite‐plus‐nitrate concentrations decreased as ground water age increased; pH, iron, and sulfate concentrations increased as ground water age increased. Aluminum, copper, and zinc concentrations decreased as ground water age and pH increased. These relations indicate that nitrate, aluminum, copper, and zinc are removed from solution as water moves from recharge areas to the confined areas of the Eutaw aquifer. The natural evolution of ground water quality, which typically increases the pH and decreases the dissolved oxygen content, may be an important limiting factor to the migration of nitrogen based compounds and metals.  相似文献   

6.
ABSTRACT: The ground water quality of a shallow unconfined aquifer was monitored before and after implementation of a border strip irrigation scheme, by taking monthly samples from an array of 13 shallow wells. Two 30 m deep wells were sampled to obtain vertical concentration profiles. Marked vertical, temporal, and spatial variabilities were recorded. The monthly data were analyzed for step and linear trends using nonparametric tests that were adjusted for the effects of serial correlation. Average nitrate concentrations increased in the preirrigation period and decreased after irrigation began. This was attributed to wetter years in 1978–1979 than in 1976–1977 which increased leaching, and to disturbance of the topsoil during land contouring before irrigation, followed by excessive drainage after irrigation. Few significant trends were recorded for other determinants, possibly because of shorter data records. Nitrate, sulphate, and potassium concentrations decreased with depth, whereas sodium, calcium, bicarbonate, and chloride concentrations increased. These trends allowed an estimation to be made of the depth of ground water affected by percolating drainage. This depth increased during the irrigation season and after periods of winter recharge. Furthermore, an overall increase in the depth of drainage-affected ground water occurred with time, which paralleled the development of the irrigation scheme.  相似文献   

7.
ABSTRACT: A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid‐Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first‐order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty‐five streams were selected within each of seven hydrogeologic subre‐gions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.  相似文献   

8.
ABSTRACT: An intensive water quality investigation was conducted in western North Carolina to determine whether water quality problems existed from point and nonpoint source inputs of sediment from surface mining activities. Depth integrated measurements of sediment transport and biological sampling of benthic communities indicated that very serious water quality problems were caused by erosion from a concentrated area of open pit mining for mica, kaolin, and feldspar. The erosion occurred on haul roads, active mines, inactive mines, and tailings disposal piles. The need for using specific “Best Management Practices” for erosion control on the mining operation is discussed. These practices need to be implemented to restore populations of trout to the degraded reaches of the river. Additional monitoring data are presented that indicate that the biological integrity of surface waters can be preserved in the vicinity of point source mining discharges when the operators utilize proper practices in settling and neutralizing their effluent. While much has been done to abate the point source discharges, attention now needs to be focused on the nonpoint sources of sediment from mining operations.  相似文献   

9.
Steady state experimental studies with a viscous analog of the aquifer system in central Long Island, New York, have shown there to be significant interaction between surface accretion, stream base flow, well recharge, and the degree of salt water intrusion. Reductions in accretion are found to cause a proportionately larger decrease in stream base flow. The degree of intrusion is found to be related to the distribution of accretion and well recharge between stream base flow and submarine flow to the sea. This interaction poses a conflict between development of the groundwater resource and maintenance of the surface water resource. Well recharge apparently offers a potential solution to the conflict.  相似文献   

10.
ABSTRACT: This study analyzes possible causes of shallow ground water salinization in the coastal area of Yun‐Lin. The local hydro‐geologic setting is determined from geological drilling data and sea floor topography. Three possible causes (sea water intrusion, salt water percolation through wells, and infiltration of salty water from fish ponds) are evaluated. Chloride concentration is used as an index to measure ground water salinization. Sea water intrusion is modeled by the advective/dispersive equation, and salt water infiltration from wells and fish ponds is calculated by estimating the amount of water percolated. The determined local hydrogeologic setting suggests that the shallow aquifer may be connected to the sea water, resulting in salt water intrusion as a large amount of shallow ground water is withdrawn. The percent contributions of sea water intrusion, percolation through wells, and infiltration of water from fish ponds, to the salinization of the shallow aquifer at Ko‐Hu in the Yun‐Lin coastal area are approximately 27 percent, less than 1 percent and 73 percent, respectively. The results suggest that the vertical infiltration of salt water from fish ponds is the major cause of shallow ground water salinization in the coastal area of Yun‐Lin.  相似文献   

11.
ABSTRACT: Feasibility of disposing treated sewage in wells sunk into a partially confined coastal limestone aquifer at Waimanalo in the island of Oahu was investigated using an electric analog model. Electric analog modeling was preferred over digital modeling because of ease with which tides could be generated at the ocean boundary in the form of sinusoidal waves. The results of model operation showed that high permeability, low storativity, and the presence of ocean render the Waimanalo aquifer highly suitable for the disposal of waste water in deep wells. Since the quality of water in the aquifer is already unsuitable for municipal, industrial, or agricultural use, waste water injection will not result in any loss of fresh water supply source to the island. It is also believed that the cost of waste water disposal through the aquifer will be considerably less than that through an ocean outfall. During model development it was discovered that electric analog models can help prepare certain graphs which can be useful for aquifer analysis without any further use of the model.  相似文献   

12.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

13.
ABSTRACT: Studies were conducted to analyze the presence of 11 pesticide residues in 12 surface waters in the Piedmont and coastal plain regions of North Carolina. Samples were assayed using enzyme‐linked immunosorbent assays (ELISAs). All ELISA results of one part per billion (ppb, μg/L) or greater were confirmed using gas chromatography/mass spectrometry (GCIMS). ELISA detection limits were approximately an order of magnitude higher than GCJMS methods. Of the 5,035 analytical results from 742 surface water samples, atrazine was detected in approximately 45 percent of the samples, five of which were at or above the Maximum Contaminant Level (MCL) of 3‐ppb. Metolachlor was detected in 64 percent of the samples. Aldicarb, 2,4‐D, chlorpyrifos, and chlorothalonil were also detected, and each was found in less than 12 percent of the samples. The remaining pesticides, including carbaryl, acetochior, methomyl, carbofuran, and alachlor, were not detected during the study period.  相似文献   

14.
ABSTRACT: The quantity, seasonality, and sources of flow were analyzed for two segments of Four Mile Branch, a small stream on the Coastal Plain of South Carolina using data obtained from USGS gauging stations. Flows in the “upstream segment,” a 12.6-km2 watershed comprising the head waters of Four Mile Branch, averaged 0.129 m3 s?1 and showed a distinctly seasonal pattern, with maximum flows in February and March and minimum flows in September and October. Inflow to the “downstream segment,” a 2.2-km2 watershed associated with the main channel, averaged 0.059 m3 s?1 and showed no seasonal patterns. Discharges per unit area of watershed were greater for the downstream segment, 0.83 m3 per year per m2 of land surface, than for the upstream segment, 0.32 m3 per year per m2. The differences in discharge rates and seasonalities between the two segments reflect differences in aquifers supplying the different segments. Analyses of Streamflow by hydrograph separation and Streamflow partitioning methods indicated that greater than 90 percent of the flows in the upstream and downstream segments were due to ground water-driven base flows.  相似文献   

15.
ABSTRACT: The purpose of this paper is to describe a land use and environmental planning model. Map overlays were used for analyzing and aggregating economic, social, and environmental data. Various land use categories were evaluated using a numerical scoring system. These scores were then used to assist in the development of land use regulations in a coastal county in South Carolina.  相似文献   

16.
ABSTRACT: Declining ground-water levels and spring discharges have heightened water user concerns about the sustainability of the Snake River Plain aquifer in southern Idaho. Diminished recharge from surface water irrigation and increased irrigation pumping have been depleting the aquifer at a rate of about 350,000 acre-feet/year. Previously, aquifer conditions were treated as an uncontrollable consequence of weather and development activities. With increasing competition for available water, the State appears to be progressing through a three-stage process of recharge management. The first stage is that which has occurred historically, where recharge is largely an incidental effect of surface water irrigation. The second stage is the implementation of intentional recharge with little regard to identifying or maximizing benefits. Idaho has been at this stage for the past few years. The State is entering a third stage in which recharge sites will be located and designed to meet specific water user and environmental objectives. Preliminary estimates using numerical and analytical models demonstrate that managed recharge within a few miles of the river will result in short-term increases in spring discharge. More distant recharge sites are needed to provide longer-term benefits. The primary challenge facing implementation of the managed recharge program will be the balancing of economic and environmental costs and benefits and to whom they accrue.  相似文献   

17.
ABSTRACT: Bank full hydraulic geometry relationships relate stream channel geometry to watershed size for specific physiographic regions. This paper presents bank full hydraulic geometry relationships and recurrence intervals for the Southeastern Plain coercion and the flat woods subtype of the Middle Atlantic Coastal Plain ecoregion found within North Carolina's Coastal Plain physiographic province. Cross‐sectional and longitudinal survey data from gated and unpaged streams were used to compute channel dimension and profile information. Power functions were developed, relating drainage area to bank full discharge, cross‐sectional area, width, and mean depth. Recurrence intervals of bank full events were estimated from gagged streams using both a Log‐Pearson Type III distribution of peak annual discharge and a partial‐duration series of average daily discharge. Results from both methods indicate that average bank full recurrence intervals for the study area are below one year. Determinations of recurrence intervals by the Log‐Pearson Type III distribution were for the most part inconclusive (less than one year), while a partial duration series estimated a 0.19 year average, ranging from 0.11 to 0.31 years.  相似文献   

18.
ABSTRACT: An established trend analysis methodology was applied to the problem of identifying and quantifying stream base flow impacts from water withdrawals and water loss through interbasin transfers. Impacts were simulated using base flow values selected from two U.S. Geological Survey (USGS) continuous record streamflow sites located within the Pinelands of southern New Jersey. Study site base flows were regressed against index site base flows with monotonic and step trend tests applied to the residuals from the regression model. The smallest, significantly detectable (α= 0.10) percentage reduction within a given simulation was used as an estimate of the sensitivity of a trend test. Evaluation of the trend analysis methodology led to the following practical considerations regarding trend test sensitivity. The proportion of study site base flow variability explained by index site base flows should be maximized, while at the same time minimizing positive, first-order autocorrelation in the regression residuals. Given the importance of detecting autocorrelation, missing values should be avoided or minimized. The quarterly (three-month) interval reduced the magnitude of autocorrelation relative to a shorter two-month sampling interval. Sensitivity appeared to improve when equalizing the number of values before and after a base flow impact(s) while seasonally biased sampling appeared to reduce sensitivity. Based primarily on past trend detection studies, nonparametric tests were deemed a better choice over their parametric counterparts, due to the lack of stringent data distributional requirements coupled with little or no loss of power even when applied to normally distributed data.  相似文献   

19.
ABSTRACT: Studies were conducted to analyze the presence of 11 selected pesticides in 12 surface water supply intakes in the Piedmont and coastal plain regions of North Carolina. Samples were assayed using enzyme linked immunosorbent assays (ELISAs). Samples with pesticide detection of 1 μg/L or greater were extracted and confirmed using gas chromatography/mass spectrometry (GC/MS). Detection limits of the immunosorbent assays for pesticide residues were generally an order of magnitude higher than GC/MS. Atrazine was detected in approximately 45 percent of the samples, and on two occasions was at or above the lifetime Maximum Contaminant Level of 3.0 μg/L set by the Environmental Protection Agency for an annual average in finished drinking water. Metolachlor was detected in 58 percent of the samples. Of the remaining nine pesticides, including carbaryl, aldicarb, 2,4‐D, chiorpyrifos, acetochlor, methomyl, carbofuran, alachlor, and chlorothalonil, only aldicarb, 2,4‐D, and chlorpyrifos were detected in less than 9 percent of the samples for each pesticide.  相似文献   

20.
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号