首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
碳纳米管对嗜酸氧化亚铁硫杆菌的毒性效应及其作用机制   总被引:1,自引:1,他引:0  
以嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为实验菌株,探讨不同条件下碳纳米管(CNTs)对其生长的影响,并采用SEM、EDS和FT-IR等手段分析CNTs对嗜酸氧化亚铁硫杆菌的毒性机制。实验结果表明,CNTs对Acidithiobacillus ferrooxidans生长有抑制作用,并随着CNTs剂量的增加,毒性增大。在CNTs投加量为500 mg/L时,培养40 h后菌株的生长量OD420达到最大值0.117,低于空白组的0.163。培养温度和培养基的pH对CNTs的细胞毒性效应有较大影响,在菌体生长的适宜条件下(pH 3.0,温度为30℃),CNTs对菌体的毒性最强。SEM、EDS和FT-IR分析结果显示,CNTs附着在细胞表面,与细胞表面的羟基、氨基等基团相互作用,并可能诱发菌体细胞产生活性氧自由基(ROS),从而导致细胞死亡。  相似文献   

2.
从山西某煤矿的酸性矿井水中分离得到菌株ATF-1,对其形态、生理生化特性、16SrDNA基因序列、生长特性及其对城市污泥的摇瓶沥滤效果进行了研究。结果表明:(1)该菌为革兰氏阴性菌,短杆状,经16SrDNA鉴定为嗜酸氧化亚铁硫杆菌(Acidthiobacillus ferrooxidans)。菌株ATF-1培养的最佳条件为初始pH 2.0、温度30℃、接种量10%(体积分数)、Fe2+投加量9.00g/L。(2)以菌株ATF-1作为沥滤菌处理城市污泥,经过15d的生物沥滤,污泥中Zn、Pb、Ni、Cu、Cd和Cr去除率的最大值分别为93.56%、46.54%、85.48%、97.68%、90.64%和45.15%,处理后污泥中的重金属含量符合《农用污泥中污染物控制标准》(GB4284—84)中规定的在酸性土壤上的最高容许含量。  相似文献   

3.
废弃挠性PCB是资源化价值高的电子废弃物之一,正需环境友好的方法回收其所含的多种有价金属。采用显微镜对破碎后的挠性PCB粉样进行解离情况观察,发现破碎法难以将挠性PCB中的金属与非金属解离。通过设计单因素实验,研究挠性PCB粉末粒度大小、添加量、培养液初始pH、菌接种量、活化时间以及FeSO4·7H2O添加量6个因素对氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f菌)浸出挠性PCB中金属过程的影响。结果表明,A.f菌不能浸出挠性PCB中Au,但Cu、Ni可以有效浸出且最优化条件为:10 g·L-1挠性PCB、粒度0.25~0.42 mm、培养基初始pH 2.5、菌接种量5%、菌活化时间5 d、FeSO4·7H2O添加量30 g·L-1,金属Cu的浸出率达到90.1%,比未接种处理高出42.4%;金属Ni的浸出率达到了85.9%,比未接种处理高出了32.9%。因此,采用生物法可环境友好地回收挠性PCB中Cu、Ni,有利于废弃挠性PCB的资源化处理。  相似文献   

4.
氧化亚铁硫杆菌浸出线路板中铜的研究   总被引:3,自引:0,他引:3  
从煤堆积水中分离得到氧化亚铁硫杆菌,利用该菌种对线路板中的铜进行了浸出实验。研究了不同线路板粉末添加量对浸出效果的影响,观察了浸出过程中pH和氧化还原电位(Eh)的变化,结果表明添加量为10g/L和20g/L时,在15d内线路板Cu几乎全部浸出,而50g/L和100g/L在15d内亦有较高的浸出效率,并呈持续上升趋势。  相似文献   

5.
一株氧化亚铁硫杆菌的筛选及生长条件研究   总被引:2,自引:0,他引:2  
从广东省大宝山矿区尾矿中分离纯化得到一株嗜酸细菌,对其进行DNA提取和16S rRNA扩增后测序,将测序结果与国际基因数据库Genbank中已有相关菌株序列进行相似性比对后,发现该菌株与氧化亚铁硫杆菌(Acidithiobacil-lus ferrooxidans)Tf-49菌位于系统发育树的同一分支中,二者相似度高达99%以上,确定其为氧化亚铁硫杆菌并命名为DBS-8菌。另外,通过设计5因素4水平的正交实验,研究了接种量、培养温度、硫酸铵浓度、初始pH和初始亚铁浓度对该菌株生长状况的影响。结果表明适宜该菌株生长的最佳初始条件为:20%的接种量、3.0 g/L硫酸铵、9.0 g/L初始亚铁、pH=2.0和28℃培养,各初始条件对细菌生长影响的顺序为:pH初始亚铁浓度接种量温度硫酸铵浓度。  相似文献   

6.
从煤堆积水中分离得到氧化亚铁硫杆菌,利用该菌种对线路板中的铜进行了浸出实验.研究了不同线路板粉末添加量对浸出效果的影响,观察了浸出过程中pH和氧化还原电位(Eh)的变化,结果表明添加量为10 g/L和20 g/L时,在15 d内线路板Cu几乎全部浸出,而50g/L和100g/L在15 d内亦有较高的浸出效率,并呈持续上升趋势.  相似文献   

7.
氧化亚铁硫杆菌浸出废弃线路板中铜的研究   总被引:6,自引:1,他引:5  
对废弃线路板中的铜进行了细菌浸出、只有硫酸亚铁环境下的浸出及酸浸出实验,研究了不同条件对比浸出效果,研究结果表明,细菌浸出比只有硫酸亚铁存在的浸出和酸浸要快得多。研究了在线路板粉末浓度12、24、40、60和120 g/L下浸出速率的变化,结果表明, 在考察范围内,浸出速度随着加入的废弃线路板粉末浓度的升高而降低,当线路板粉末的浓度>60 g/L时,浸出速度维持在较低水平,选取24 g/L作为浸出的线路板粉末的浓度。分别在细菌培养0、24、48和72 h时加入线路板粉末24 g/L进行浸出实验,结果表明,细菌培养时间长,使得浸出过程进行得也更快。  相似文献   

8.
氧化亚铁硫杆菌浸铜作用研究   总被引:3,自引:2,他引:3  
为研究氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f)对铜浸出的作用,从某煤堆积水中分离得到A.f菌,利用该菌对铜进行浸出实验,设置3个处理,3个处理的浸出液分别为9 K培养基(简称S),成熟菌液(简称MS)和过滤除菌液(简称FS)。结果表明,3个处理中铜都得到了浸出,浸出铜浓度按S、FS和MS依次递增分别为4 433、5 377和6 296 mg/L;浸出初期,MS中的铜,浸出速度最快,过滤除菌液中次之,而培养基中的速度比较稳定,比前两者均慢,24 h后三者浸铜速度趋近一致;三者中pH、Eh变化相似,pH均先升高至3.4左右保持相对稳定,Eh均先迅速下降至280 mV后保持稳定。由实验可知,氧化亚铁硫杆菌主要在浸出初期促进了铜的浸出,且菌液中溶解氧氧化Fe2+以及酸性条件下氧化Cu0对铜的浸出作用不容忽视。  相似文献   

9.
低分子量有机酸对氧化亚铁硫杆菌影响   总被引:5,自引:0,他引:5  
氧化哑铁硫杆菌生物淋滤修复重金属污染土壤研究报道很少,因为该菌对低分子量有机酸敏感.研究 6 种低分子量有机酸(甲酸、乙酸、丙酸、草酸、苹果酸和柠檬酸)对嗜酸性氧化哑铁硫杆菌 R2 氧化 Fe2 的影响,且利用高效液相色谱法测定沈阳冶炼厂和张士灌区重金属污染土壤中低分子量有机酸的浓度.结果表明,6 种有机酸对 R2 氧化能力均具有抑制作用,且抑制顺序为:甲酸乙酸丙酸草酸苹果酸柠檬酸.其中 R2 对甲酸最敏感,甲酸浓度为0.064 mmol/L时,抑制率达到 60%;浓度为 0.254 mmol/L时,R2 氧化Fe2 的能力完全被抑制.液相色谱分析可知,冶炼厂和张士灌区土壤中有机酸的浓度很低,其中草酸含量最高,分别为 0.04和 0.149 mmol/L.尽管氧化亚铁硫杆菌对低分子量有机酸很敏感,但是试验土壤中低分子量有机酸的浓度远远低于硫杆菌的耐受限度.因此,分离菌株 R2 有望应用于重金属污染土壤的修复.  相似文献   

10.
氧化亚铁硫杆菌是脱硫领域的重要微生物之一。研究了在亚铁和含硫基质双底物存在的条件下,氧化亚铁硫杆菌对2种能源物质的利用情况,结果表明,Thiobacillus ferrooxidans在双底物利用过程中,铁氧化系统首先启动,随Fe2+浓度的下降,硫氧化系统开始启动,之后两者协同作用;3种含硫基质的存在对Fe2+的氧化有不同的影响,S对Fe2+的氧化不产生抑制作用,而Na2S2O3和Na2SO3对Fe2+的氧化有一定的抑制,尤其是Na2SO3的抑制作用更明显,亚铁完全氧化所需的时间更长。  相似文献   

11.
以青海某铅锌尾矿为研究对象进行酸预处理加速模拟静态淋溶实验,重点研究了氧化亚铁硫杆菌(At.f菌)接种量变化对尾矿中重金属Zn、As迁移释放的影响。结果表明,随时间延长,接种量变化均可导致淋溶体系pH值下降、电导率上升,氧化还原电位先上升后下降。At.f菌可明显促进Zn、As的释放,不同接种量对重金属的迁移释放作用不同;At.f菌存在下,Zn的释放能力大于As,Zn优先于As溶出,Zn、As浓度均表现为快速释放和缓慢释放并趋于平稳两个阶段,Evolich模型和Guass模型可分别描述Zn、As的释放过程。通过对细菌淋溶前后残渣SEM-EDS及XRD图谱分析发现,淋溶后尾矿颗粒结构疏松,表面腐蚀明显,生成了CaSO4、钙磷石等不溶物,使Zn、As后期释放减慢。  相似文献   

12.
利用巨大芽孢杆菌制备高硫煤矸石肥料   总被引:1,自引:0,他引:1  
高硫煤矸石的大量堆积对环境造成了严重污染,为了开发利用高硫煤矸石,对巨大芽孢杆菌处理高硫煤矸石生产煤矸石肥料进行了研究,包括煤矸石的粒径、体系pH、温度、接菌量、培养时间、振荡等因素条件对制备煤矸石肥料的影响,得到制备煤矸石肥料的最佳条件。研究表明,当煤矸石的粒径为60目、体系pH 7.0~8.0、接菌量为2.5×1014~5.0×1014cfu/g、30℃下培养5 d时煤矸石中的碱解氮、有效磷和速效钾的含量分别比原样提高了26.84倍、65.71倍和10.55倍;有效硫、有效钙和有效硅的含量分别比原煤矸石中提高2.70倍、1.27倍和1.07倍。  相似文献   

13.
利用淋容试验,模拟自然降雨,分析了煤矸石对高速公路沿线地下水造成的污染,获得了大量真实可靠的数据,得出了煤矸石淋溶液中无机盐是造成高速公路沿线地下水污染的主要原因.并基于多孔介质流体力学和溶质运移动力学建立了描述微量元素在土壤-水环境系统中迁移的数学模型,利用该模型对煤矸石淋溶微量元素在道路沿线土壤-水环境中的迁移规律进行了模拟分析,进一步预测了污染物浓度变化规律及分布特征,可为公路沿线土壤-水环境污染提供分析依据.  相似文献   

14.
以多年期赤泥和煤矸石为主要原料,分析了其化学成分和物性特征,通过设计不同的原料配比和烧结温度,探讨其最佳工艺条件以及各种参数指标,试图为赤泥的大宗化利用提供一种新的途径。实验结果表明最佳工艺条件为:多年期赤泥与煤矸石质量比为20∶80,成型压力为6 MPa,烧结温度为1 100℃左右保温2 h。烧结砖体"泛霜"现象基本消失,抗压强度为12.18 MPa、吸水率为21.6%,满足国家粉煤灰普通烧结砖GB5101-2003中的要求。  相似文献   

15.
自燃煤矸石作为吸附剂对水溶液中的磷酸盐有较好的吸附去除作用。通过改变时间、溶液初始浓度和温度等条件,研究了自燃煤矸石对磷酸盐的吸附反应。结果表明,在298 K的条件下,自燃煤矸石对磷的最大饱和吸附量可达7.07 mg·g-1,吸附平衡时间约为120 h,而且吸附数据符合Langmuir等温吸附模式。动力学研究数据表示,其吸附过程符合伪二级动力学模式和颗粒内扩散模式,证明了吸附过程中同时发生了化学吸附和物理吸附。吸附热力学参数自由能变ΔG为(-10.52,-11.74,-14.89)kJ·mol-1,焓变ΔH为46.96 kJ·mol-1和活化能E为63.71 kJ·mol-1,证明了吸附过程属于自发的吸热反应,是属于物理吸附和化学吸附的共同作用。  相似文献   

16.
以朔州某煤矸石发电厂的煤矸石及其燃烧产物粉煤灰和炉渣为研究对象,采用高纯锗探测器和低本底多道γ能谱仪测定其放射性核素226Ra、232Th和40K,并分析比较了煤矸石中各组分在燃烧过程中的变化情况。通过对测定实验数据进行整理,经过燃烧反应后,煤矸石中的226Ra和232Th向燃烧产物粉煤灰中显著迁移,40K向燃烧产物炉渣中显著迁移。对实验样品进行SEM形貌扫描并作XRD图分析,并给出了煤矸石燃烧后226Ra、232Th和40K的富集因子,分别为3.67、2.08和2.30。且226Ra、232Th在燃烧产物粉煤灰和炉渣中的富集比例均约为7:3,40K的富集比例约为1:1。最后,依据国内外相关标准,分析了该地区煤矸石、粉煤灰和炉渣的放射性水平,对其适用范围进行了评估。  相似文献   

17.
利用煤矸石为原料制备超细氢氧化铝粉体.采用高温煅烧活化煤矸石,利用C2S晶相转变制备煤矸石自粉化料,用8%Na2CO3溶液从煤矸石自粉化料中以NaAlO2形式提取铝组分,用高效分散剂碳化法制备超细氢氧化铝粉体.研究了高效分散剂碳化法制备高纯超细氢氧化铝粉体的影响因素,找出了高效分散剂碳化法制备超细氢氧化铝粉体的最佳条件,制备出了平均粒度<100nm、纯度>99.9%的氢氧化铝,为煤矸石的高价值利用开辟了一条新的途径.  相似文献   

18.
常规的煤矸石充填复垦塌陷地技术给环境造成难以治理的二次污染.煤矸石淋出液中的重金属元素会污染底部土体和地下水.引入国外矿区复垦应用成熟的土工布技术,选取聚乙烯丙纶、涤纶针刺、涤纶复合土工布和HDPE土工膜4类土工材料,采用室内柱状淋溶实验,初步研究土工布对煤矸石淋出液中重金属的阻隔作用.结果表明,4种土工布都不同程度地降低了淋出液中重金属的含量.其中,聚乙烯丙纶和涤纶针刺土工布降低重金属Cr的效果较好,浓度低于对照23.7%~33.5%,总量低于对照36.2%~50.0%;HDPE土工膜和涤纶复合土工布对重金属Pb和Cu十分有效,浓度低于对照17.0%~21.1%,总量低于对照22.9%~26.8%.同时,土工布吸附了大量的重金属,淋溶柱中重金属的残留量降低.聚乙烯丙纶和涤纶复合土工布吸附Cr的能力较高,涤纶针刺土工布吸附Pb的效果较好,涤纶针刺土工布和HDPE土工膜能大量地吸附Cu.研究可知,土工布的种类多,功能强大,在国内矿区土地充填复垦工作中将有广阔的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号