首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
Alcyonium paessleri and Clavularia frankliniana are numerically abundant soft corals in the nearshore (12 to 33 m depth) benthic communities of eastern McMurdo Sound. They are much less abundant in western McMurdo Sound where a third species, Gersemia antarctica, co-occurs in low numbers. The body tissues of these three species are comprised mainly of organic material (53 to 70% dry wt), which is primarily dervied from NaOH-soluble protein and refractory material. The energetic contents of the whole-body tissues of A. paessleri, C. frankliniana and G. antarctica are 15.9, 17.3, and 14.5 kJ g-1 dry wt, respectively. The mean biomass per individual is 1.81, 0.008, and 45 g dry wt for each respective species. Based on population densities of 7.3, 1337.3, and 0.04 soft corals m-2 for A. paessleri, C. frankliniana and G. antarctica, respectively, the population energetic densities are estimated to be 210.1, 185.1, and 26.1 kJ m-2. Despite the relatively rich energetic content of the tissue and apparent vulnerability to predators, very little predation occurs on these soft corals. Two potential predators, the antarctic sea stars Perknaster fuscus and Odontaster validus, exhibited significant chemotactic defensive tube-foot retractions to hexane, chloroform, methanol, and aqueous methanol extracts of each soft coral. In addition, wholebody tissue of each soft coral was rejected by the demersal fish Pseudotrematomus bernacchii and the cryopelagic fish Pagothenia borchgrevinki. In contrast, whole soft-coral tissues sequentially extracted in four increasingly polar solvents were readily ingested by these antarctic fishes, indicating that sclerites do not play a significant role in deterring predators. Our results indicate that these antarctic soft corals contain bioactive compounds which deter common predatory seastars and fishes.  相似文献   

2.
Gonad and blood samples were taken from the captive female Japanese sardineSardinops melanostictus between 1988 and 1989, and changes in serum levels of gonadal steroids were correlated with the annual gonadal cycle. Under captive conditions, female fish did not mature and spawn spontaneously, although oocytes developed up to the end of vitellogenic growth. Based on evidence from ovarian histology, the annual gonadal cycle of the Japanese sardine was divisible into four periods, i.e., immature (June to October), vitellogenesis (November to December), spawning (January to March), and post-spawning (April to May). The pattern of seasonal change in the gonadosomatic index (GSI) showed an inverse correlation to change in water temperature and reflected the degree of ovarian maturity. The serum estradiol-17 level increased from its lowest concentration (0.12 ng ml–1) in September to a peak (1.14 ng ml–1) in March. Serum 17,20-dihydroxy-4-pregnen-3-one (17,20-P) was detectable at low levels (<0.3 ng ml–1) between October and February, but was below the assay detection limit (0.06 ng ml–1) at all other times. Testosterone was not detectable (<0.06 ng ml–1) in the serum of any fish throughout the year. The effects of several steroids on the maturation of follicle-enclosed oocytes of sardine were examined in vitro, and 17,20-P was found to be the most potent inducer of maturation. This suggests that post-vitellogenic oocytes of the Japanese sardine in captivity have an ability to respond to an appropriate hormonal effector and subsequently to resume meiotic maturation.  相似文献   

3.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

4.
B. Patel  J. T. Eapen 《Marine Biology》1989,103(2):203-209
Exposure of the tropical arcid blood clam Anadara granosa L., collected from Bombay waters in 1986, to sublethal concentrations of naphthalene (Nap) (5, 10 and 15g Nap ml-1), induced various changes in vital biochemical systems. The condition index (CI) remained largely within the control range, although tissue water content after 96h exposure increased significantly (p<0.001). Glycogen levels appreciably decreased, both in muscles (p<0.001) and digestive glands (p<0.01). AMP activity remained unaltered irrespective of the ambient Nap concentration. ADP levels decreased by more than 20% and ATP levels also decreased significantly (p0.001) by more than 60% with increases in ambient Nap levels from 5 to 15 g ml-1. Lysosomal marker enzymes-arylsulphatase and acid phosphatase-showed various changes. Levels of the former were 10 to 17 times higher than the latter. Total and free arylsulphatase activity in hepatic cells decreased on exposure of clams to 5 and 10g Nap ml-1, but not significantly. However, it was significantly inhibited (p<0.001) towards the upper limits of exposure concentration. The same was also true of acid phosphatase activity. Nicotinamide adenine dinucleotide (NADH2) oxidation of lipochrome showed a dramatic decrease in activity in the range of 37 to 88% over controls with increasing Nap from 5 to 15 g ml-1. Fatty acids also exhibited significant changes in composition with a decrease in polyunsaturated acids and an increase in certain saturated fatty acids. Protein and carbohydrate levels increased significantly (p<0.001) towards upper limits of exposure concentration. Pyruvic acid levels increased significantly by 2 to 6 times over controls on exposure to 5 to 15 g Nap ml-1. Explanation of these changes is attempted in terms of the glycolysis pathway involving pyruvic acid oxidation and oxidative phosphorylation in the electron transport system.  相似文献   

5.
The effects of food limitation on growth rates and survival of marine invertebrate larvae have been studied for many years. Far less is known about how food limitation during the larval stage influences length of larval life or postmetamorphic performance. This paper documents the effects of food limitation during larval development (1) on how long the larvae ofCrepidula fornicata (L.) can delay metamorphosis in the laboratory after they have become competent to metamorphose and (2) on postmetamorphic growth rate. To assess the magnitude of nutritional stress imposed by different food concentrations, we measured growth rates (as changes in shell length and ash-free dry weight) for larvae reared in either 0.45-m filtered seawater or at phytoplankton concentrations (Isoehrysis galbana, clone T-ISO) of 1 × l03, 1 × 104, or 1.8 × 105 cells ml–1. Larvae increased both shell length and biomass at 1 × 104 cells ml–1, although significantly more slowly than at the highest food concentration. Larvae did not significantly increase (p > 0.10) mean shell length in filtered seawater or at a phytoplankton concentration of only 1 × 103 cells ml–1, and in fact lost weight under these conditions. To assess the influence of food limitation on the ability of competent individuals to postpone metamorphosis, larvae were first reared to metamorphic competence on a high food concentration ofI. galbana (1.8 × 105 cells ml–1). When at least 80% of subsampled larvae were competent to metamorphose, as assessed by the numbers of indlviduals metamorphosing in response to elevated K+ concentration in seawater, remaining larvae were transferred either to 0.45-m filtered seawater or to suspensions of reduced phytoplankton concentration (1 × 103, 1 × 104, or 5 × 104 cells ml–1), or were maintained at 1.8 × 105 cells ml–1. All larvae were monitored daily for metamorphosis. Individuals that metamorphosed in each food treatment were transferred to high ration conditions (1.8 × 105 tells ml–1) for four additional days to monitor postmetamorphic growth. Competent larvae responded to all food-limiting conditions by metamorphosing precociously, typically 1 wk or more before larvae metamorphosed when maintained at the highest food ration. Surprisingly, juveniles reared at full ration grew more slowly if they had spent 2 or 3 d under food-limiting conditions as competent larvae. The data show that a rapid decline in phytoplankton concentration during the larval development ofC. fornicata stimulates metamorphosis, foreshortening the larval dispersal period, and may also reduce the ability of postmetamorphic individuals to grow rapidly even when food concentrations increase.  相似文献   

6.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

7.
E. E. Deason 《Marine Biology》1980,60(2-3):101-113
Grazing experiments were performed with temperatureacclimated Acartia hudsonica fed the diatom Skeletonema costatum in concentrations ranging from 50 to 3×104 cell ml-1 at 5°, 10° and 15°C. The ingestion data were best fit by an Ivlev equation. Feeding threshold values of 39 and 59 cells ml-1 were not significantly different from zero; however, filtration rates were depressed at low food concentrations. Maximum filtration rates increased exponentially with temperature, reaching a maximum with copepods collected at 14°–15°C, and then declining. Both the increase in ingestion rate with increasing food concentration and the maximum ingestion rate were significantly greater as experimental temperature was increased. Maximum ingestion rates were reached at concentrations greater than 6×103 cells ml-1. Percent of body carbon ingested per day at 5 g C L-1 increased from 1.5% at 5°C to 6.7% at 15°C. At 500 g C L-1, the ingestion increased from 84% (5°C) to 660% (15°C). Percent of body nitrogen at 0.5 g N L-1 increased from 0.6% per day at 5°C to 2.5% per day at 15°C. At 50 g N L-1, the ingestion was 42% body nitrogen at 5°C and 250% at 15°C. The influence of grazing by A. hudsonica on phytoplankton in Narragansett Bay, USA was estimated for 1972–1977. The percent of standing stock removed by grazing rarely exceeded 5% per day except during the late spring when S. costatum growth becomes nutrient limited and higher temperatures favor the rapid population growth of A. hudsonica.  相似文献   

8.
Metabolic rates of the ctenophore Beroe ovata within the length range from 0.4 mm (newly hatched larvae) to 60 mm were investigated. At 20° the respiration rates (Q, µg O2 ind.–1 h–1) of individuals with wet weights (W, mg) less than or greater than 100 mg changed according to the equations Q=0.093W0.62 and Q=0.016W0.99, respectively. The weight-specific respiration rate of the juvenile ctenophores with wet body weights of 0.021–100 mg diminished approximately 20-fold (from 0.35 to 0.017 µg O2 mg–1 h–1, respectively), but did not change within the range from 100 to 30,000 mg. The difference in the slope of the regression lines seems to be attributable to the ontogenetic changes in B. ovata metabolism. For the tested temperature range of 10–28°, the mean Q10 coefficient was equal to 2.17±0.5. The basal metabolism of B. ovata narcotised by chloral hydrate was 4.5±0.9 times lower than total metabolism. Such a metabolic range is considered to be characteristic of aquatic invertebrates with high levels of locomotory activity.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
Measurements have been made of oxygen consumption rates O2 of 10 specimens of the mesopelagic deep-sea fangtooth fish Anoplogaster cornuta. Determinations were made at 1 atm pressure, at temperatures of 3°, 7°, and 10°C, at dissolved oxygen concentrations ranging from near saturation to zero, with the fish swimming at low, controlled speeds. Weight-specific O2 were uniformly low. They showed Q10's of 2.5 and 1.3, respectively, in the temperature ranges 3° to 7°C, and 7° to 10°C, at dissolved oxygen concentrations above 2 ml (standard temperature and presusure, STP)/1. Measurable O2 continued in these fish at dissolved oxygen concentrations down to the lowest levels detectable with our instruments. At 7°C the average critical oxygen tension (P c ) for the entire group was near 35 mm Hg. However, there is a statistically significant positive slope to the regression line relating O2 to P c for individual fish. The physiological and ecological significance of these results is discussed, particularly with reference to thermal effects and to the basis for survival by A. cornuta in the oxygen minimum layers of the eastern Pacific Ocean.  相似文献   

10.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

11.
Escape-swimming speeds (U max) were studied in settled turbot (Scophthalmus maximus L.) reared at 18°C. Metamorphosis was complete at 4.0 cm total length (TL). U max scaled in proportion to TL0.74 in fish of 0.88 5o 8.00 cm TL at 18C. The scaling relationship for U max was similar for temperatures between 13 and 23°C and could be fitted by the model: . U max temperature-dependent, with a Q10 of 1.77 over the temperature range studied. Analysis of covariance showed that U max for farmed turbot was 14% lower than for wild fish filmed within 2 wk of capture; 3 mo after capture the average differences in escape performance were no longer significant, which suggests that the lower escape speeds of farmed fish are due to acclimation effects and not genetic stock differences. In order to assess the individual variability of U max, 18 wild juvenile turbot [TL=6.2±0.4 cm (Week 1) to 7.5±0.5 cm (Week 17); means±SD] were maintained in individual containers at 18°C. U max was determined weekly for 6 wk, standardised for fish length using the scaling relationship U max=1.46 TL 0.74, and individuals were ranked in order of performance. Temperature was reduced after 6 wk to 13°C, resulting in a significant decline in U max from 104.0±14.4 to 87.8±12.5 cm s-1 (means±SD). After 3 wk at 13°C U max had increased to a level not significantly different from that at 18°C. Kendall's coefficient of concordance showed that repeatability of ranking of the experimental U max of individuals was maintained over a 13 wk period and through temperature change. The results demonstrate that escape-swimming speeds in juvenile turbot are repeatable, individually variable, and can be modified in response to temperature acclination.  相似文献   

12.
Nannochloris atomus was maintained in exponential growth at photon flux densities (PFD) from 400 to 700 nm, ranging from 10 to 200 mol m-2 s-1. Growth was lightsaturated at PFDs in excess of 100 mol m-2 s-1, with a mean light-saturated growth rate at 23 °C of 1.5×10-5s-1 (1.2 d-1). The light-limited growth rates extrapolated to a compensation PFD for growth that was not significantly different from zero, although no changes in cell numbers were observed in a single culture incubated at a PFD of 1.0 mol m-2s-1. Dark-respiration rates were independent of PFD, averaging 1.7×10-6 mol O2 mol-1 C s-1 (0.14 mol O2 mol-1 C d-1). The maximum photon (quantum) efficiency of photosynthesis was also independent of PFD, with a mean value of 0.12 mol O2 mol-1 photon. The chlorophyll a-specific light absorption cross-section ranged from 3 to 6×10-3 m2 mg-1 chl a and was lowest at low PFDs due to intracellular self-shading of pigments associated with high cell-chlorophyll a contents. The C:chl a ratio increased from 10 to 40 mg C mg-1 chl a between PFDs of 14 and 200 mol m-2 s-1. These new observations for N. atomus are compared with our previous observations for the diatom Phaeodactylum tricornutum in terms of an energy budget for microalgal growth.  相似文献   

13.
Biosynthesis of lipids by Thysanoessa inermis collected from Balsfjorden, northern Norway, in May 1980, was examined in vitro. The highest concentration of lipid within the krill was in the hepatopancreas, and this organ was the most active in esterifying free fatty acids into wax esters. The hepatopancreas (i.e., thoracic contents) incorporated (14C) glucose, (14C) alanine and 3H2O into wax esters, with the fatty alcohol moieties being labelled more than the fatty acids. (14C) fatty acid was incorporated preferentially into the fatty acid moieties of wax esters, this incorporation being markedly stimulated by free fatty alcohol. It is concluded that the fatty alcohols of wax esters are preferentially biosynthesized de novo from dietary protein and carbohydrates, whereas the fatty acids derive preferentially from dietary lipid. On the basis of 3H incorporated from 3H2O, the hepatopancreas in a 50 mg II-group (2 yr old) individual of T. inermis is capable of biosynthesizing de novo, approximately 0.1 mg of lipid (as fatty acids) per day at 5°C.  相似文献   

14.
Nitrogen fixation (acetylene reduction) at rates of up to 1.2 g N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green algae (Calothrix sp., Anabaena sp., and Phormidium sp.) were implicated as the organisms responsible for the nitrogenase activity. They occurred in a reduced microzone within the C. decorticatum thallus where nitrogen fixation was optimized. Nitrogen fixation did not affect the kinetic constants for ammonium uptake in C. decorticatum (Ks=12.0 M, Vmax=13.4 mol NH3 g dry wt-1 h-1) determined using the perturbation method. Nevertheless, C. decorticatum thalli which fixed nitrogen had internal dissolved nitrogen concentrations which were over 1.4 times higher than in non-fixing thalli. This suggests that if C. decorticatum does derive part of its nitrogen requirement from the blue-green algae which it harbors, the transfer does not involve competition between this process and the uptake of ambient ammonium.  相似文献   

15.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The soluble fraction of crude tissue homogenates prepared from intact specimens of the shipworm Lyrodus pedicellatus Quatrefages was observed to increase the reducing sugar content of solutions of carboxymethylcellulose (CMC). The predominant CMCase activity detected in these lysates by zymography corresponds to a polypeptide of approximately 40 kDa. This protein, designated Lp-egl-1, was purified and characterized. Experiments described in this study were performed in 1997 using L. pedicellatus from a culture maintained at the Woods Hole Oceanographic Institution. Purified Lp-egl-1 increases reducing sugar content of solutions of CMC and suspensions of phosphoric acid–swollen cellulose, decreases viscosity of CMC solutions, and cleaves the oligosaccharides cellopentaose and cellotetraose internally to release cellotriose and cellobiose. It has no detectable activity against microcrystalline cellulose, cellotriose, cellobiose, or p-nitrophenyl -D-glucopyranoside and does not release glucose from any tested substrate. These results are consistent with the conclusion that Lp-egl-1 is an endo-1, 4--D glucanase (E.C. 3.2.1.4). The K m value of Lp-egl-1 for CMC is 20 mg ml–1. The enzymatic activity is inhibited by cellobiose and cellotriose, but not by glucose. Lp-egl-1 differs in molecular mass as well as kinetic and immunological properties from a previously described endoglucanase secreted by a cultivable endosymbiont of shipworms, Teredinibacter turnerae Distel et al., 2002. It has not been determined whether Lp-egl-1 is a product of the L. pedicellatus nuclear genome or of an associated symbiotic microbe.Communicated by J.P. Grassle, New Brunswick  相似文献   

17.
A continuously recording, flow-through oxygen electrode system for the measurement of oxygen exchange is described and applied to an investigation of photosynthetic rates in the marine algae Fucus vesiculosus L. and Laminaria digitata (Huds.) Lam. The photosynthetic rate (mg O2.g dry weight-1.h-1) at 15°C and 21.5 mW.cm-2 (usually just saturating) ranges in F. vesiculosus from 1.20 in basal portions of the thallus to 9.27 at the apices and in L. digitata from 1.19 mg O2 at the thallus base to 3.97 mg O2 at distances of several centimetres behind the upper thallus margin. This variation is reduced when the photosynthetic rate is expressed in terms of fresh weight or surface area.This research was carried out while one of us (R.J.K.) was an Alexander von Humboldt fellow at the University of Kiel, and is part of the programme Sonderforschungsbereich 95, Wechselwirkung Meer-Meeresboden, Universität Kiel.  相似文献   

18.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

19.
Resting metabolic rate was measured in demersal stages of the teleostNotothenia neglecta Nybelin from the South Orkney Islands, Antarctica, from 1985 to 1987. The relationship between and body mass (Mb) conformed to the general relationship , wherea is a proportionality constant andb is the scaling exponent. (mg O2 h–1) was found to scale toMb (0.82±0.011) in the summer (November to April, 1.6 to 1 850 g,n=56) and toMb (0.76±0.013) in the winter (May to October, 0.9 to 1 850 g,n=57) (values ofb are means ± SD). Although the scaling exponents were significantly different (P<0.01), was similar in the juvenile stages of summer- and winter-caught fish matched for body mass. The effects of activity on oxygen consumption was studied using a Brett respirometer. Adult stages had a factorial aerobic scope for activity of 5.7, which is similar to that reported for demersal fish from temperate latitudes. The effects of temperature on resting metabolism was investigated in fish with similar sedentary lifestyles from the North Sea (Agonus cataphractus andMyoxocephalus scorpius) and the Indo-West Pacific (Paracirrhites forsteri, P. arcatus, Neocirrhites armatus andExallias brevis). Extrapolated values of for the tropical species approached zero at 5 to 10°C. For a standard 50 g fish, for the tropical species at 25°C was in the range 3.4 to 4.4 mg O2 h–1, compared with 1.3 mg O2 h–1 forNotothenia neglecta at its acclimation temperature. Thus, the maximum metabolic rate of sedentary tropical species at 24°C is likely to be 2 to 4 times higher than inN. neglecta at 0°C. This suggests that the energy available for sustained activity is significantly lower in cold- than in warm-water fish.  相似文献   

20.
Main effects and interactions of light and temperature on rates of growth (), net photosynthesis (Ps), and dark respiration (R) of the red seaweedGracilaria tikvahiae were investigated in outdoor, nutrient-replete continuous-flow seawater culture chambers. Below 15°C,G. tikvahiae did not grow and between 15° and 30°C, both main effects and interactions of light and temperature on and Ps were significant, which explains the occurrence of this alga as a summer annual in its northern range. Temperature interacted with light (I) through its influence on the vs I and Ps vs I curves. The initial slope of the vs I curve, , the light saturation intensity, Is, and maximum growth rate, max, were all significantly lowerat 15°C compared to 20°, 25°, or 30°C. Maximum values of max, the Ps:R ratio and the net photosynthesis:gross photosynthesis ratio (Ps:Pg) all occurred at 25°C, suggesting that this is the best temperature for growth ofG. tikvahiae. Values for Pmax increased up to 30°C, indicating that the temperature for maximum growth and net photosynthesis are not the same forG. tikvahiae. Significant photoinhibition of growth and photosynthesis at full incident sunlight (I0) occurred at 15°C but not at 20°, 25°, or 30°C. Steele's equation fit the 15°C vs I data best, whereas the hyperbolic tangent function fit the 20°, 25°, and 30°C data best. Main effects and interactionof light intensity and temperature on rates of R were also significant (P<0.001). R was highly intercorrelated with and Ps (0.86r0.94), indicating that R inG. tikvahiae is primarily regulated by growth rate and not temperatureper se. Environmental factors that regulate growth, such as light intensity, exert a great influence on R inG. tikvahiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号