首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《产业与环境》1995,17(1):4-8
温室效应:事实与数字温室效应是我们大气层的一个自然特征.没有这种效应,地球表面上的平均温室就会是—18℃.地球,主要是在其表面,吸收来自太阳的辐射.能量被大气层和海洋重新分布,并以更长的、热的波长重新辐射到太空中.一些热辐射被大气层中有辐射活性的气体...  相似文献   

2.
原子吸收分光光度法 目前的文献中有各种有关汞的分析方法,其中尤以无火焰原子吸收法为多。Hatch和Off用氯化亚锡将汞离子还原为元素汞,而后将其以空气载入原子吸收池来测定溶液中汞是具有代表性的一种方法。Vaughn和Mccarthy将土壤、矿石、气体的含汞气流通过500℃以上的金丝捕样网而测定无机、有机汞。  相似文献   

3.
硫化氢气体快速检测方法研究   总被引:7,自引:0,他引:7  
研究了快速监测硫化氢气体的新方法——硫化氢被动式检气管方法。该法是基于气体分子扩散(Fick)定律和化学吸收原理,将检气管内的海棉载体涂渍上对硫化氢有特效的显色剂(缓冲液G和醋酸铅)。测定时,硫化氢通过检气管端口扩散进入管内,在经过载体时,与载体上的显色剂发生反应,从而产生明显的颜色变化(浅黄色变成棕黑色)。检气管显色长度的平方与硫化氢质量浓度及采样时间的乘积在50~1500mg·m-3范围内成线性关系,从而快速监测环境中硫化氢的时间加权平均质量浓度。该检气管集采样与分析为一体,可快速测定硫化氢气体的质量浓度。与传统的采样分析方法比较,该检气管结构简单,操作方便,不受被测环境的空间大小、有无电源等影响;携带方便,利于外出测定和大面积布点测定。经过应用实验表明,该检气管具有较高的灵敏度,达到设计要求。  相似文献   

4.
绿化树种对大气污染物吸收净化能力的研究   总被引:53,自引:1,他引:53  
通过熏气试验,研究测定了部分绿化树种对主要大气污染物-SO2,Cl2和HF的吸收净化能力,结果表明:绿化树种对大气污染物具有一定的吸收净化能力,并依污染气体和树种的不同具有明显差异。  相似文献   

5.
董帅  张海萍  邵媛媛  张辉  祝京旭 《环境化学》2019,38(6):1420-1426
提出了一种常温下金属粉末涂料冷邦定的方法.该法首先由聚乙烯醇(PVA)胶水包裹金属铝粉制备带胶铝粉,而后通过流化床湿空气法处理带胶铝粉和粉末涂料底粉,实现二者在室温下的邦定.通过实验对流化床湿空气法中相关影响因素:流化气体相对湿度、流化时间和流化气体流量进行了考察,得出在该装置上当流化气体为饱和湿空气,流化时间为10 min,流化气体流量为0.5 L·min~(-1)时,邦定效果最佳.与未邦定的金属粉末涂料相比,沉积到测试板上的样品与初始样品中金属铝粉含量差值大大减小,说明金属铝粉和底粉邦定成功,制备的金属粉末涂料达到工业使用要求.  相似文献   

6.
介绍了一种在生态网络台站上可以广泛使用的痕量气体排放通量测定的静态箱法,以稻田CH4排放为例,通过自动和手动的测量结果的误差比较,研究了如何设计手动观测的采样时间和频度,以便可靠地获得季节排放总量值。  相似文献   

7.
地面氧化亚氮排放静态箱测定技术   总被引:2,自引:0,他引:2  
氧化亚氮是最重要的温室效应气体之一,国际科学界对其进行了大量的研究。开展氧化亚氮研究最重要的方面是测定技术,目前主要有静态箱法和微气象法,而以静态箱技术的使用最为广泛。静态箱技术也有其优点和缺点。文章从基本原理、取样箱设计、取样时间策略、自动采样箱设计、气相色谱测定技术参数、计算方法及自动测定系统等方面,系统介绍静态箱技术。我国在氧化亚氮研究上还较少,已被测定的土地类型非常有限,文章将有助于促进我国在这方面的研究。  相似文献   

8.
北京低山区森林土壤中CH4排放通量的研究   总被引:5,自引:0,他引:5  
CH4是大气中一种重要的温室气体,与土壤圈有着频繁的交换过程。用静态箱式技术原位测定了北京西山低山区油松人工林地土壤中CH4的排放通量,结果显示北京西山森林土壤为大气CH4重要的汇。年平均吸收值为20.47 g(m-2(h-1,变动范围0~44.8 g(m-2(h-1。 吸收值有一定的季节变化规律, 冬季的吸收值最小,几乎为0,春秋季较高,夏季最高。影响吸收的外界环境因素主要有地表下5 cm处的土壤温度。原状土壤氧化CH4的模拟实验表明吸收过程为纯生物化学过程,吸收作用主要发生在0~5 cm的矿质土层,而枯落物层和20 cm以下的层次基本无吸收反应。CH4的氧化速率在开始的12 h内可用一级反应动力学方程 C =C 0e-kt很好地模拟 。  相似文献   

9.
张羽  王英滨 《环境化学》2012,31(1):50-56
采用膨润土为载体,KHCO3为前驱物通过喷雾-干燥法制成固体碳酸钾吸收剂,制成的固体吸收剂粒径大小为0.5—2.0 mm,密度为1.73 g.mL-1.通过K2CO3负载量、吸收温度、吸收时间、床层纵横比等因素考察固体吸收剂对CO2气体的吸收效率及循环反应特性.分析碳酸钾吸收剂对CO2的吸收机理,并与以碳酸氢钠为前驱物制备的吸收剂进行对比,比较两种吸收剂对CO2吸收效果的差异性.通过XRD测试吸收剂吸收反应前后组成的变化,BET多点法测试吸收剂比表面积,扫描电镜观察吸收剂表面形态特征.结果表明,碳酸钾吸收剂和碳酸钠吸收剂对CO2气体均具有较高的吸收量,相比而言碳酸钾吸收剂的碳酸化反应速率较快,而且经过多次循环反应后吸收效果未发生衰减,在60℃—80℃范围内,碳酸钾吸收剂对CO2的吸收能力最佳.  相似文献   

10.
湖滨带温室气体氧化亚氮(N2O)排放研究   总被引:7,自引:0,他引:7  
利用不锈钢气体采集箱,在太湖梅梁湾湖区,沿水体至陆地方向对植被型和裸露型湖滨带进行温室气体N2O的原位排放观测。结果发现两种类型湖滨带N2O排放均显著高于临近的开阔水体,可以达到10~100倍,水位变幅区是湖滨带温室气体N2O排放的峰值区,是陆向和水向辐射区的5~10倍。在观测期间,N2O排放通量的范围为-159.2~1565.6μg·m-2·h-1,具有明显的时空梯度变化,时间上,9月份最高,随着气温的下降和芦苇的衰亡而逐渐减少,在1月份最低;空间上,自水向辐射区至陆向辐射区,先逐渐升高,在水位变幅区达到峰值,然后再降低。该结果初步说明了湖滨带是温室气体N2O的一个极其重要的排放源,而目前IPCC对水体N2O排放的估算可能存在很大的疏漏;同时也从一定程度上反映了湖滨带是湖泊脱氮的重要区域,其对缓解湖泊氮污染起到了举足轻重的作用。  相似文献   

11.
孙涤君  马怡载 《环境化学》1995,14(6):524-530
本文使用含锶空白纸、灵敏度高、记忆效应小的全热解石墨管测定环境样中的锶,提出一种新混合改进剂(钯加酒石酸),能有效消除高氯酸、硝酸以及各种基体的干扰,比较了各原子化温度时理论和实验特征量,使全热解石墨管有可能用于石墨炉原子吸收法测定各种环境样品中的锶,准确度和精度优于5%。  相似文献   

12.
除草剂对土壤氮素循环的影响   总被引:2,自引:0,他引:2  
丁洪  张玉树  郑祥洲 《生态环境》2011,20(4):767-772
土壤微生物参与土壤氮素循环的生物学与生物化学过程,对氮素形态转化与去向产生很大影响。在现代农作物生产上农田普遍施用除草剂,除草剂进入土壤生态环境中影响土壤微生物种群数量、活性和土壤氮素循环过程,在一定程度上改变氮素各去向的比例。因此,除草剂的施用对植物氮素吸收利用和土壤氮的环境释放具有一定效应。文章综述了除草剂对生物固氮、土壤氮矿化与转化、氨挥发、硝化反硝化、温室气体N2O排放、植物的氮吸收利用、土壤氮损失等方面的影响,并提出了今后进一步研究的方向,为减少氮素损失和温室气体排放以及除草剂使用的安全性评价提供参考。  相似文献   

13.
正2014年5月27日来源:法国食品安全、环境和劳动管理局法国食品安全、环境和劳动管理局(Anses)发布了关于对产品中包含的5种生殖毒性或内分泌干扰物的暴露构成的潜在人类健康风险的报告。被评估的物质中有3种被列为《分类、标识和包装(CLP)法规》定义的2类生殖毒性物质。这3种物质是:正己烷,在消费品中用作一种溶剂;甲苯,用作一种溶剂和原料;  相似文献   

14.
二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)是对全球气候变化影响最大的温室气体。由于土壤与大气之间的水热交换需要一定的传导平衡时间,因此土壤温室气体与温湿度之间的关系存在不同的表现形式。目前,有关温室气体研究多集中于季节性排放特征,而关于CO2、CH4、N2O的日变化研究却少见报道。以北京小麦(Triticum aestivuml)农田土壤为研究对象,对施肥和不施肥条件下CO2、CH4、N2O交换通量和气温、土壤温度进行连续观测,来探讨3种温室气体的日变化特征。采用人工静态暗箱法对小麦田土壤进行连续48 h原位观测,每2 h测定1次,每次盖箱时间为30 min。气体样品中的CO2、CH4、N2O用气相色谱仪(Agilent 6890A,FID/ECD)测定。结果表明:施肥与不施肥条件下小麦生育后期麦田土壤CO2、CH4、N2O交换通量具有明显的日变化特征。土壤表现为CH4的吸收汇、CO2和N2O的排放源。CH4的吸收通量、CO2和N2O的排放通量均表现为施肥区>对照区。CO2、CH4的交换通量的70%以上出现在白天,而施肥区和对照区的N2O白天排放通量分别达到全天的81.8%、91.1%。另外,相关性分析表明,CO2、N2O交换通量的日变化与气温和5 cm地温呈极显著(P<0.01)或显著(P<0.05)的正相关关系,且N2O交换通量日变化与10 cm地温呈现极显著的正相关关系,说明温度是影响CO2、N2O交换通量日变化的重要因素;而气温、5 cm地温、10 cm地温对CH4交换通量日变化不存在显著性影响。  相似文献   

15.
二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)是对全球气候变化影响最大的温室气体。由于土壤与大气之间的水热交换需要一定的传导平衡时间,因此土壤温室气体与温湿度之间的关系存在不同的表现形式。目前,有关温室气体研究多集中于季节性排放特征,而关于CO2、CH4、N2O的日变化研究却少见报道。以北京小麦(Triticum aestivuml)农田土壤为研究对象,对施肥和不施肥条件下CO2、CH4、N2O交换通量和气温、土壤温度进行连续观测,来探讨3种温室气体的日变化特征。采用人工静态暗箱法对小麦田土壤进行连续48 h原位观测,每2 h测定1次,每次盖箱时间为30 min。气体样品中的CO2、CH4、N2O用气相色谱仪(Agilent 6890A,FID/ECD)测定。结果表明:施肥与不施肥条件下小麦生育后期麦田土壤CO2、CH4、N2O交换通量具有明显的日变化特征。土壤表现为CH4的吸收汇、CO2和N2O的排放源。CH4的吸收通量、CO2和N2O的排放通量均表现为施肥区对照区。CO2、CH4的交换通量的70%以上出现在白天,而施肥区和对照区的N2O白天排放通量分别达到全天的81.8%、91.1%。另外,相关性分析表明,CO2、N2O交换通量的日变化与气温和5 cm地温呈极显著(P0.01)或显著(P0.05)的正相关关系,且N2O交换通量日变化与10 cm地温呈现极显著的正相关关系,说明温度是影响CO2、N2O交换通量日变化的重要因素;而气温、5 cm地温、10 cm地温对CH4交换通量日变化不存在显著性影响。  相似文献   

16.
<正>根据法国和美国研究人员进行的一项研究,对羟基苯甲酸酯和三氯生可能影响男性胎儿的生长。一个法国研究小组与来自位于美国亚特兰大市的疾病控制与预防中心的科学家合作,选择了520对母亲-儿子进行研究,测定了在这些母亲怀孕期间采集的尿样中的9种苯酚的浓度水平。同时,他们利用超声检查评估胎儿的生长情况。该研究发现,暴露于较高浓度水平三氯生(一种广泛使用的抗微生物剂)的胎儿在妊娠末期的生长较为缓慢。同时,化妆品中使用的对羟基苯甲酸酯与略微较高的婴儿初生重存在相关性。  相似文献   

17.
正甲苯-2,4-二异氰酸酯(TDI)是一种挥发性较强的有毒物质,是当前含有TDI的塑胶场地潜在毒性最大,污染时间最长,需重点预防的污染物.本文采用电喷雾质谱法和自制气体采样装置,对某塑胶场地上不同高度空气中游离TDI污染情况进行了采样和检测.对气体中游离TDI的污染进行快速准确的测定,对于全面认识和了解气体中TDI污染,保护活动人员的身体健康具有一定参考价值.  相似文献   

18.
使用薄层扫描仪原位扫描方法,研究了13种DDT类化合物吸附在硅胶上的紫外吸收光谱。结合紫外光谱特征,扩大了一般薄层色谱分析分离定性能力,使DDT、DDMU、DBP和DDM这些在很多溶剂系统中展开,不易完全分离的化合物,可以在薄层板上进行定性鉴定。 通过这些化合物在薄层上的紫外光谱和其在非极性溶剂中的吸收光谱进行比较,讨论了这类化合物的紫外吸收和结构的关系。  相似文献   

19.
张磊  刘耀炜  包创  高小其  苏琴  方震 《环境化学》2019,38(4):777-783
断层土壤气是揭示断层性质和构造活动的重要地球化学手段,亦是研究断裂带释放气体对环境影响的重要观测途径.本文通过安宁河断裂带冕宁地区春季、夏季和秋季的三期断层土壤气观测,获取了Rn、CO_2和Hg的浓度和分布特征.研究结果表明,安宁河断裂带冕宁地区地下气体Rn、CO_2和Hg释放具有不均匀性,土壤气测线从西至东主要有3个土壤气体异常区段,可能揭示出安宁河断裂带上的3组主要破碎带位置.不同季节下,土壤气CO_2和Hg浓度具有差异性,与温度和降雨有一定关系,显示出CO_2和Hg浓度的季节效应.在土壤气Rn、CO_2和Hg浓度较高的区域,居民生活应采取相应防护措施.本文结果为分析断裂带释放气体特征及对环境和生活的影响提供了地球化学参考依据.  相似文献   

20.
所有温室气体中,最急需削减的是CO_2排放。 一方面,由于已知这种气体的寿命非常长,因而它的排放特征几乎是不可逆的。另一方面,要采取的措施涉及技术选择,以及在规划和土地利用问题上的选择,这两者无论哪一种都不容易做到可逆。不考虑气候变化的风险,以后再来推翻我们今后数年中所做的决定,将会付出非常高昂的代价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号