共查询到20条相似文献,搜索用时 15 毫秒
1.
《环境科学与技术》2017,(8)
医疗废物焚烧是二(口恶)英排放的重点源,但缺乏对其系统、全面的研究,为进一步明确其二(口恶)英排放水平和分布特征,获得二(口恶)英排放监控的重要基础数据,以3处医疗废物焚烧炉为研究对象,采用高分辨气相色谱/高分辨质谱联用仪对烟气中二(口恶)英进行测定和分析。结果表明,烟气中二(口恶)英质量浓度均值为2.379 ng/Nm~3,毒性当量浓度均值为0.249 ng/I-TEQ Nm~3,达到国家排放标准;同系物指纹特征分布以PCDFs为主,质量浓度和毒性当量浓度贡献率最大的单体分别为1,2,3,4,6,7,8-HpCDF和2,3,4,7,8-PeCDF;2,3,4,7,8-PeCDF对I-TEQ相关性最好,相关系数R~2达0.959,可作为指示单体;排放因子均值为6.087μg I-TEQ/t,明显高于生活垃圾焚烧炉,需引起更多关注。 相似文献
2.
3.
研究了某市10座生活垃圾焚烧炉烟气中二噁英的排放特性,对比了焚烧炉炉型、焚烧处理量、烟气净化系统对二噁英排放特性的影响.结果表明:10座生活垃圾焚烧炉二噁英的排放浓度为0.016~0.104 ng·Nm~(-3)(以I-TEQ计),9座垃圾焚烧炉二噁英排放满足国家相应的排放标准(0.1 ng·Nm~(-3)(以I-TEQ计)).根据二噁英排放浓度排序对应的烟气净化系统分别为SNCR(Selective Non-Catalytic Reduction)+半干法+活性炭喷射+布袋湿法+活性炭喷射+布袋半干法+活性炭喷射+布袋,表明安装SNCR装置有利于二噁英的减排.另外,不同垃圾焚烧炉排放的二噁英指纹特性不仅与烟气净化系统和炉型有关,还与垃圾来源有一定关联. 相似文献
4.
综合分析了所测的遗体火化炉的36个样品和文献中41组数据中二(口恶)英(PCDD/Fs)化合物的排放指纹特征,分析了不同单体与毒性当量浓度I-TEQ的相关性,提出了适合火化炉的I-TEQ指示物,为以后实现在线监测PCDD/Fs提供依据.结果表明,本次监测样品的毒性当量浓度跨度较大,为0.014~24.0 ng·m-3(以I-TEQ计,下同),平均值为2.68 ng·m-3.所有新建火化炉的结果均低于0.5 ng·m-3,75%的旧炉超过2017年7月1日开始执行的新标准限值,表明现有部分老旧火化炉及其尾气处理设施亟需技术改造才能满足新要求.体积分数最高的单体依次为OCDD、1,2,3,4,6,7,8-HpCDF和1,2,3,4,6,7,8-HpCDD,分别为16.7%±11.8%、12.1%±4.4%和11.9%±4.2%.对I-TEQ的贡献率最大的单体为2,3,4,7,8-PeCDF,且PCDFs与PCDDs的毒性当量浓度比值,即ρ(PCDFs/PCDDs)> 1.四、五、六氯代二(口恶)英和呋喃与I-TEQ具有显著的线性相关性,其中,1,2,3,7,8-PeCDF、2,3,4,7,8-PeCDF和1,2,3,7,8-PeCDD与I-TEQ的相关系数r大于0.89.与I-TEQ线性关系最佳的单体为2,3,4,7,8-PeCDF,R2为0.97,斜率为2.36;最佳的同类物为PeCDF,R2为0.97,斜率为2.22. 相似文献
5.
分别采集了3种生活垃圾焚烧炉产生的飞灰或熔融炉渣样品,分析了其中的二(口恶)(口英)含量及其毒性当量,并讨论了17种2,3,7,8位氯取代的二(口恶)(口英)分布特征及其对总毒性当量的贡献.结果表明,机械炉排焚烧炉产生的飞灰中二(口恶)(口英)最多,总浓度为319ng/g,毒性当量为6.7ng I-TEQ/g;其次为流化床焚烧炉,产生的飞灰中二(口恶)(口英)总浓度为38.7ng/g,毒性当量为0.8ng I-TEQ/g;气化熔融焚烧炉产生的熔融炉渣中二(口恶)(口英)很少,总浓度为38.7pg/g,毒性当量仅为1.1pg I-TEQ/g;所有的2,3,7,8位氯取代的13C同位素标记内标化合物回收率在39%~156%之间.尽管不同的垃圾焚烧炉在二(口恶)(口英)的生成量上有明显的差别,但是产生的二(口恶)(口英)同类物的归一化浓度以及对毒性当量贡献的归一化结果分布特征十分相似,表明3种垃圾焚烧炉在垃圾焚烧过程产生二(口恶)(口英)可能具有相似的反应机理. 相似文献
6.
《环境科学学报》2017,(12)
综合分析了所测的遗体火化炉的36个样品和文献中41组数据中二英(PCDD/Fs)化合物的排放指纹特征,分析了不同单体与毒性当量浓度I-TEQ的相关性,提出了适合火化炉的I-TEQ指示物,为以后实现在线监测PCDD/Fs提供依据.结果表明,本次监测样品的毒性当量浓度跨度较大,为0.014~24.0 ng·m~(-3)(以I-TEQ计,下同),平均值为2.68 ng·m~(-3).所有新建火化炉的结果均低于0.5 ng·m~(-3),75%的旧炉超过2017年7月1日开始执行的新标准限值,表明现有部分老旧火化炉及其尾气处理设施亟需技术改造才能满足新要求.体积分数最高的单体依次为OCDD、1,2,3,4,6,7,8-Hp CDF和1,2,3,4,6,7,8-Hp CDD,分别为16.7%±11.8%、12.1%±4.4%和11.9%±4.2%.对I-TEQ的贡献率最大的单体为2,3,4,7,8-Pe CDF,且PCDFs与PCDDs的毒性当量浓度比值,即ρ(PCDFs/PCDDs)1.四、五、六氯代二英和呋喃与I-TEQ具有显著的线性相关性,其中,1,2,3,7,8-Pe CDF、2,3,4,7,8-Pe CDF和1,2,3,7,8-Pe CDD与I-TEQ的相关系数r大于0.89.与I-TEQ线性关系最佳的单体为2,3,4,7,8-Pe CDF,R~2为0.97,斜率为2.36;最佳的同类物为Pe CDF,R~2为0.97,斜率为2.22. 相似文献
7.
燃油式火化机排放烟气中二□英类污染水平和排放特征 总被引:2,自引:0,他引:2
对国内6台燃油式火化机排放烟气中的二□英类污染水平和排放特征进行了初步研究.结果表明:烟气样品中ρ(二□英类)为9.2~120.0 ng/m3〔273.15 K,101.325 kPa,φ(O2)为11%换算值〕,毒性当量(TEQ)浓度为1.0~8.1 ng/m3;所有烟气样品中二□英类同类物分布相似,17种2,3,7,8-氯代二□英类同类物被全部检出,其中2,3,4,7,8-P5CDF对毒性当量浓度的贡献最大;ρ(PCDFs)高于ρ(PCDDs),ρ(T4CDFs)在PCDFs中最高;燃烧控制和烟气处理措施是影响燃油式火化机二□英类生成和排放的重要因素. 相似文献
9.
采用现场监测方式调查了西南地区5家再生铝冶炼企业废气中PCDD/Fs排放情况.结果表明,5家再生铝企业废气中PCDD/Fs浓度范围(以TEQ计,下同)为0.015~0.16 ng·m-3,平均为0.093 ng·m-3;PCDD/Fs排放因子范围为0.041~4.68μg·t-1,平均排放因子2.01μg·t-1;其中,坩埚熔炼炉的PCDD/Fs排放因子最高.各家再生铝冶炼企业废气中17种PCDD/Fs异构体分布特征差异明显.另外,仅安装了布袋除尘装置企业的废气中R PCDF/PCDD最低,为1.7;而其他安装了水冷或水喷淋设施企业的废气中R PCDF/PCDD为3.8~12.6(平均7.7).以上结果表明,再生铝冶炼企业PCDD/Fs生成机制与废气处理装置类型关系密切.本研究结果为我国制定再生铝行业排放标准和最佳可行性技术指导规范提供了技术支撑. 相似文献
10.
采集了电子垃圾拆解地周边125个点位的151个土壤样品,分析了土壤中4~8氯代二噁英和二噁英类多氯联苯的浓度.表层土壤样品中总二噁英的浓度范围为280~7 010 pg·g-1,平均浓度为1 380 pg·g-1.中层和深层土壤样品中总二噁英的平均浓度分别为表土的63%和38%.表土样品中二噁英毒性当量浓度(以I-TEQ计)范围为1.4~94.8 pg·g-1.根据德国关于毒性当量浓度的指导方针,125个土壤样品中只有19个(15%)可以被认为对人体健康无害,其余85%的土壤需要调查二噁英的来源.如果考虑多氯联苯对毒性当量的贡献,则有98%的土壤需要调查二噁英的来源.主因子分析被用来调查这一地区二噁英的排放源.通过对土壤中二噁英的同系物分布进行分析,发现拆解活动是这一地区热过程二噁英的主要排放源,也是这一地区土壤中二噁英的主要来源. 相似文献
11.
从二(?)(?)类化合物的结构、来源、毒性等简要说明对其监测的必要性,且从仪器监测(包括气相色谱、气质联用、串联质谱等)和生物监测(包括利用指示生物、生物标志物等)概述了80年代以来国内外对二(?)(?)类物质尤其是几种极毒性化合物如多氯代二苯二(?)(?)(PCDDs)和多氯代二苯呋喃(PCDFs)等化合物的检测技术成果。 相似文献
12.
不同垃圾焚烧设备中二英的排放特征和I-TEQ指示物的研究 总被引:3,自引:2,他引:3
分析了国内3种不同类型的垃圾焚烧设备中二英化合物的排放特征,不同PCDD/F单体与I-TEQ的相关性以及23478-PeCDF与I-TEQ的线性回归分析.得到了不同类型的垃圾焚烧设备中二英同系物的统计学分布特征.结果发现,生活垃圾、医疗垃圾和危废焚烧炉中二英(PCDD/F)同系物分布虽有一定差异,但变化不大,与生活垃圾焚烧炉和危废焚烧炉相比,医疗垃圾焚烧炉中二英同系物的分布稍有区别.在3种焚烧炉的烟道气中体积分数最大的是OCDD和1234678-HpCDF,分别为12.3%~23.0%和15.0%~19.7%;而对I-TEQ贡献最大的则是23478-PeCDF,体积分数为33.1%~34.5%,远远高于其它的PCDD/F单体.通过对不同的PCDD/F单体与I-TEQ的相关性分析发现:23478-PeCDF与I-TEQ的相关性最好,相关系数R2为0.93~0.98;而毒性最大的2378-TCDD与I-TEQ的相关性较差,R2为0.29~0.49;体积分数最大的OCDD与I-TEQ的相关性很差,R2为0.03~0.12;体积分数较大的1234678-HpCDF与I-TEQ也有较好的相关性,R2为0.62~0.87,但依然次于23478-PeCDF.通过23478-PeCDF与I-TEQ线性回归的结果发现:即使I-TEQ的浓度范围为5~6个数量级,23478-PeCDF与I-TEQ也表现出很好的线性关系,对于不同的垃圾焚烧设备,回归曲线斜率为在1.16~1.40之间,相关系数R2在0.94~0.97之间. 相似文献
13.
采用高分辨气相色谱法/高分辨质谱法(HRGC/HRMS)对广东某地生活垃圾焚烧厂烟道气及周边环境空气和可能来源的环境空气中17种二英进行了分析.讨论了所有样品中同系物、主要毒性贡献体的特性.并运用主成分和聚类分析法,探究了焚烧厂周边监测点位与焚烧厂排放烟气及可能来源的关系.结果表明周边空气中二英浓度低于焚烧厂烟道气,且不受主导风向的影响.在调查基础上,推断轮胎厂及露天焚烧为可能污染源.轮胎厂二英浓度均低于上风向监测点,露天焚烧空气中二英高于厂界外监测点.对各同类物百分比分析可知,烟道气和所有空气中主要同类物为OCDD、1,2,3,4,6,7,8-HpCDD及1,2,3,4,6,7,8-HpCDF,但空气中同类物还包括OCDF;焚烧厂周边监测点与轮胎厂空气中二英单体百分浓度相似,烟气与露天焚烧中二英单体分布相似.进一步研究表明所有空气样品中单体1,2,3,7,8-PeCDD和2,3,4,6,7,8-HxCDF与总毒性当量浓度的线性相关系数分别为0.95和0.75,相关性较强.主成分分析及聚类分析表明垃圾焚烧厂对周边空气产生影响,轮胎厂对上风向产生影响,露天焚烧对厂界影响较小. 相似文献
14.
采用现场监测方式调查了西南地区6家干法水泥窑废气中PCDD/Fs排放情况.结果表明,未协同处置废物的水泥生产企业PCDD/Fs排放浓度范围(以TEQ计)为0.002 9~0.006 2 ng·m-3,平均0.004 3 ng·m-3;添加污泥作为原料和燃料的水泥企业的PCDD/Fs排放水平为0.028 ng·m-3.所有水泥窑的二英浓度都明显低于我国水泥工业大气污染物排放标准(0.1ng·m-3).6家水泥企业PCDD/Fs排放因子为0.008 9~0.084μg·t-1,接近或低于UNEP发布的水泥行业最低排放因子(0.05μg·t-1);其中协同处置污泥水泥窑的最高,约为其他5家平均排放因子(0.011μg·t-1)的7.6倍.另外,两类水泥窑废气PCDD/F异构体分布特征存在明显差异.结果表明,采用现代预热干法工艺的水泥企业的二英排放水平较低,可进一步开发我国水泥企业协同处置废物的能力. 相似文献
15.
遗体火化二(口恶)英类排放水平及影响因素 总被引:1,自引:0,他引:1
采用现场监测方式调查了国内13台火化机烟气中PCDD/Fs排放情况,分析火化炉型、烟气处理设施和随葬品等因素对其排放水平的影响,提出相关污染控制措施和管理措施的建议. 结果表明,各样品的PCDD/Fs毒性当量浓度(以I-TEQ计,下同)差异较大,范围为0.027~15.8 ng·m-3,平均值为3.2 ng·m-3. PCDD/Fs排放因子范围为45.9~22236 ng·具-1,均值为4738 ng·具-1. 平板炉PCDD/Fs排放水平总体低于捡灰炉,达标率高于捡灰炉. 火化烟气中17种PCDD/Fs异构体分布特征存在一定差异. 部分火化机PCDD/Fs排放浓度仍处于较高水平,有必要从源头上减少污染、提高污染控制技术、加强政府监管,如将随葬品另炉火化、增设二燃室、配备布袋除尘器和活性炭喷射处理设施等. 相似文献
16.
17.
18.
19.
20.
采集了机械炉捧焚烧炉和循环流化床焚烧炉两种典型生活垃圾焚烧炉排放烟气样品,应用高分辨气相色谱/高分辨质谱(HRGC/HRMS)同位素内标稀释法分别测定了烟气不同相样品中17种2,3,7,8-位氯取代的PCDDs/PCDFs同类物的含量.结果表明,两种炉型中PCDDs/PCDFs同类物及毒性当量贡献率在冷凝水相中所占的比例均在85%以上,远远高于在滤筒相和XAD-2树脂相中所占的比例,机械炉排炉焚烧排放烟气中∑PCDFs与∑PCDDs的比值为0.77;而循环流化床焚烧排放烟气∑PCDFs与∑PCDDs的比值为5.28.机械炉排炉焚烧烟气三相中OCDD为优势分布,尤其是滤简相中OCDD的百分比含量高达51.1%.流化床焚烧炉焚烧烟气滤筒、树脂、冷凝水相中没有出现某个单体对总浓度具有绝对优势的贡献.机械炉排焚烧炉和循环流化床焚烧炉排放的烟气中PCDFs的毒性当量贡献最大,尤其是单体2,3,4,7,8-peCDF对总毒性当量的贡献均在30%以上. 相似文献