首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tellinid bivalve Macoma balthica (L.) has an extensive geographic range that reaches from temperate to arctic coastal waters in the North Atlantic and North Pacific oceans. Recent studies have indicated that eastern and western North Atlantic populations are morphologically and genetically different from one another, and that they may have diverged as sibling species. To determine the genetic relationship between M. balthica from the Pacific and Atlantic coasts of North America, populations from each coast were examined at 11 enzyme loci using standard starch gel electrophoresis. Allele frequency data indicate that M. balthica populations from San Francisco Bay, California appear more closely related to western North Atlantic populations than to populations from Oregon. We suggest that San Francisco Bay populations were introduced relatively recently from western North Atlantic populations. The Oregon populations are probably a natural extension of northern populations that occur along Northern Asia and in the eastern North Atlantic.  相似文献   

2.
The alternation of glacial and interglacial events during the Pleistocene has produced changes in species distribution ranges leading to bottlenecks and alterations of patterns of gene flow. The European stalked barnacle, Pollicipes pollicipes, is a sessile pedunculate cirripede that inhabits the rocky intertidal frame, from Senegal to the northwestern coast of France. In this work, we have analyzed a fragment of the mitochondrial gene cytochrome c oxidase subunit I for 569 individuals of P. pollicipes in order to investigate whether the shifts in climatic conditions that occurred during the Pleistocene influenced the current pattern of distribution of genetic variation of P. pollicipes. A pre-last glacial maximum pattern of demographic expansion was found, in concordance with many other North Atlantic marine species. On the other hand, three potential glacial refugia were identified: North African coasts, northwestern Iberian Peninsula and English Channel/Brittany.  相似文献   

3.
Genetic structure and phylogeography of the harbour porpoise Phocoena phocoena in the North Pacific were examined using 358 bps sequences from the 5′ end of the mitochondrial DNA control region including those reported previously and newly obtained from the west Pacific. AMOVA and pairwise population φ st estimates clearly revealed genetic differentiation between an east/south and a north/northwest group with the break along the Pacific Rim at British Columbia. In addition, nested clade phylogeographical analysis, neutrality tests, mismatch distribution analysis, genetic diversities and Mantel test, suggested that the observed genetic structure might have been influenced by contiguous range expansion with restricted gene flow in the direction from south to north along the North American coasts and east to west along the Pacific Rim in the middle to late Pleistocene.  相似文献   

4.
Phragmatopoma spp. are marine, reef-building polychaetes that inhabit the intertidal and shallow subtidal zones of both coasts of the Americas. Phragmatopoma californica is found in the Pacific Ocean along the California coast south to Mexico, while Phragmatopoma caudata inhabits the Caribbean islands and Atlantic Ocean from the Florida coast south to Brazil. Although apparently geographically isolated, P. californica and P. caudata have been found to interbreed (Pawlik 1988a) and thus their specific taxonomic relationship has been unclear. In this study, two genes, cytochrome c oxidase subunit I (COI) and the first internal transcribed spacer region (ITS-1), were sequenced to assess the specific status of P. californica and P. caudata as well as Phragmatopoma virgini. Comparison of sequences revealed that samples of P. californica shared no COI haplotypes or ITS-1 sequences with P. caudata. Phylogenetic analyses, including maximum parsimony and Bayesian methods, clustered each species in separate, well-supported clades with genetic distances between them being greater than between either contested species or the uncontested, valid species, P. virgini. Thus, the molecular data support that P. californica and P. caudata are separate species. However, the sample of individuals of P. virgini included one genetically divergent individual, whose morphology was found to match that of a species formerly recognized as P. moerchi but since synonymized with P. virgini. Divergences among lineages were dated using the COI sequences, after adjustment for non-clock-like behavior. Consequently, we suggest that P. virgini and P. caudata are sister taxons and that P. californica diverged from the P. virgini/P. caudata clade ∼5.7 mya with P. virgini diverging from P. caudata ∼3 mya.  相似文献   

5.
The genetic structure of the flounders Platichthys flesus L. and P. stellatus Pallas was investigated on different spatial scales through analysis of allozyme variation at 7 to 24 polymorphic loci in samples collected from different regions (Baltic Sea, North Sea, Brittany, Portugal, western Mediterranean, Adriatic Sea, Aegean Sea and Japan) in 1984 to 1987. No geographic variation was evident within a region. Some pattern of differentiation by distance was inferred within the Atlantic, while the Mediterranean comprised three geographically isolated populations and was itself geographically isolated from the Atlantic (fixed allele differences at up to three loci were found among P. flesus populations from the Atlantic, the western Mediterranean, the Adriatic Sea, the Aegean Sea and also P. stellatus from the coast of Japan). Sea temperature during the reproductive period probably acts as a barrier to gene flow between populations. Genetic distances among European flounder populations (P. flesus) were higher than, or of the same magnitude as, the genetic distance between Pacific (P. stellatus) and European flounder populations, suggesting that P. flesus is paraphyletic and/or there is no phylogenetic basis to recognising P. stellatus as a different species. The divergence between P. flesus and P. stellatus was thus inferred to be more recent than the divergence between the present P. flesus populations from the NE Atlantic and eastern Mediterranean. The eastern Mediterranean populations are thought to originate from the colonisation of the Mediterranean by a proto-P. flesus/P. stellatus ancestor, whereas the present western Mediterranean population has undergone a more recent colonisation event by P. flesus. Patterns of mitochondrial DNA variation, established on a smaller array of P. flesus samples, were in accordance with the geographic patterns inferred from the allozyme survey. In addition, they supported the hypothesis of a two-step colonisation of the western Mediterranean. These results contribute to our understanding of the biogeography of the Mediterranean marine fauna, especially the group of boreal remnants to which P. flesus belongs. Received: 7 February 1997 / Accepted: 26 March 1997  相似文献   

6.
A cryptic lineage of hammerhead shark closely related to but evolutionarily distinct from the scalloped hammerhead (Sphyrna lewini) was recently documented in the western North Atlantic Ocean. Here, we demonstrate using nuclear and mitochondrial DNA sequences that this cryptic lineage also occurs in the western South Atlantic Ocean, extending its distribution >7,000 km from its only previously reported location. Our results also further validate the existence of this evolutionarily distinct hammerhead shark lineage. The southern hemisphere cryptic individuals were 1.6 and 5.8% divergent from S. lewini (sensu stricto) for the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial control region loci, respectively, and formed a strongly supported, reciprocally monophyletic sister group to sympatric S. lewini. Coalescent analysis (ITS2 locus) yielded a divergence estimate of ~4.5 million years between S. lewini and the cryptic lineage. Given expanding concerns about overfishing of the large-bodied hammerhead sharks, this cryptic lineage needs to be formally recognized and incorporated into shark management and conservation planning to avoid the inadvertent, potential extirpation of a unique hammerhead lineage.  相似文献   

7.
Pop-up satellite archival tags were implanted into 68 Atlantic bluefin tuna (Thunnus thynnus Linnaeus), ranging in size from 91 to 295 kg, in the southern Gulf of Maine (n=67) and off the coast of North Carolina (n=1) between July 2002 and January 2003. Individuals tagged in the Gulf of Maine left that area in late fall and overwintered in northern shelf waters, off the coasts of Virginia and North Carolina, or in offshore waters of the northwestern Atlantic Ocean. In spring, the fish moved either northwards towards the Gulf of Maine or offshore. None of the fish crossed the 45°W management line (separating eastern and western management units) and none traveled towards the Gulf of Mexico or the Straits of Florida (known western Atlantic spawning grounds). The greatest depth recorded was 672 m and the fish experienced temperatures ranging from 3.4 to 28.7°C. Swimming depth was significantly correlated with location, season, size class, time of day, and moon phase. There was also evidence of synchronous vertical behavior and changes in depth distribution in relation to oceanographic features.Communicated by J.P. Grassle, New Brunswick  相似文献   

8.
L. B. Connell 《Marine Biology》2000,136(6):953-960
The internal transcribed spacer (ITS) region from 19 isolates of the algal genus Heterosigma (Chromophyta: Raphidophyceae) was amplified by polymerase chain-reaction (PCR) and sequenced. Isolates were obtained from both the Atlantic and Pacific basins, including Europe, eastern North America, western North America, Japan and New Zealand. This study presents evidence that all Heterosigma isolates in this study are representatives of one species (H. akashiwo). All 19 isolates, except one (LB 2005) had identical ITS sequence (98.31% similar by pairwise comparison); Isolate LB 2005 may represent a separate subspecies. Such high degree of ITS sequence identity implies that the organism has spread between oceanic regions in geologically recent times, possibly by human means. In addition to those from Heterosigma spp., the ITS regions from other marine Raphidophyceae (Chattonella antiqua, C. marina, C. subsalsa, Fibrocapsa japonica, and Olisthodiscus luteus) were amplified and sequenced using PCR. Total ITS lengths differed among the Raphidophyceae (C. antiqua, 577 base pairs (bp); C. marina, 577 bp;. C. subsalsa, 579 bp; F. japonica, 830 bp; H. akashiwo, 561 and 563 bp; O. luteus, 829 bp), but 5.8S rDNA sequences were similar in size (13 to 142 bp). The high ITS sequence identity between C. antiqua and C. marina (>99.9% by pairwise comparison) suggests the need for a taxonomic review of these species encompassing all morphological, genetic, physiological and biochemical information. Additionally, a number of cultures of Raphidophyceae were positively identified. In general, ITS comparisons among the Raphidophyceae may be most useful at the level of species determination rather than at the population level. Received: 12 July 1999 / Accepted: 16 March 2000  相似文献   

9.
Seabob shrimps of the genus Xiphopenaeus are important fishery resources along the Atlantic and Pacific coasts of Central and South America. The genus was considered to comprise two species: the Atlantic Xiphopenaeus kroyeri (Heller, Sitzungsber Math Naturwiss cl kaiserliche Akad Wiss Wien 45:389–426, 1862), and the Pacific Xiphopenaeus riveti (Bouvier, Bull Mus Hist Nat Paris 13:113–116, 1907). In a recent review, Xiphopenaeus was regarded as a monotypic genus, on the basis that no clear morphological differences could be found between Pacific and Atlantic specimens (Pérez Farfante and Kensley, Mem Mus Nat Hist Nat Paris 175:1–79, 1997). In the present work, nuclear (allozymes), and mitochondrial (Cytochrome Oxidase I) genes were used to demonstrate the validity of X. riveti and reveal the presence of two cryptic species of Xiphopenaeus within X. kroyeri in the Atlantic Ocean. The high levels of molecular divergence among these species contrast with their high morphological resemblance. Interspecific sequence divergences (Kimura 2-parameter distance) varied from 0.106 to 0.151, whereas intraspecific distances ranged from 0 to 0.008 in Xiphopenaeus sp. 1, from 0 to 0.003 in Xiphopenaeus sp. 2, and from 0.002 to 0.005 in X. riveti. In addition, five diagnostic allozyme loci were found between sympatric samples of Xiphopenaeus sp. 1 and 2 along the Brazilian coast. The results suggest that Xiphopenaeus sp. 2 from the Atlantic is more closely related to the Pacific X. riveti than to the Atlantic Xiphopenaeus sp. 1. Furthermore, a high level of genetic structuring (Xiphopenaeus sp. 1: F ST =0.026; P<0.05; Xiphopenaeus sp. 2: F ST =0.055; P<0.01) was found in the Brazilian Xiphopenaeus populations, indicating the presence of different genetic stocks in both Atlantic species. These findings have important commercial implications as they show that the fisheries of the two Atlantic species must be managed separately, and that each one is comprised of different populations.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

10.
Morphologically plastic, cryptic, or geographically widespread species pose similar challenges to the evolutionary biologist: their taxonomic status is often unclear yet must be known to study almost any aspect of their biology, ecology, evolution, or biogeography. The marine bryozoan Membranipora membranacea (L.) is morphologically plastic and geographically widespread in temperate oceans of the Northern and Southern Hemispheres, and its taxonomy is unclear. This study examined genetic relationships among allopatric populations and sympatric morphs of this species, or species complex. Colonies were collected from 1992 to 1995. Allozymes were used to elucidate the relationships among four widely separated populations, two in the North Atlantic and two in the North Pacific Ocean. Allozymes and mtDNA sequencing were used to clarify the genetic relationships among three sympatric morphs that might correspond to the species M. villosa Hincks and M. membranacea in the northeastern Pacific (Washington State). Populations in the North Atlantic and North Pacific had no fixed allelic differences at the loci tested but were separated by an average Nei's genetic distance of 0.581, suggesting their near-sibling species status. Populations from Friday Harbor (Washington) and Catalina Island (California) were not significantly differentiated, which was attributed to high gene flow. Populations on either side of the North Atlantic were genetically indistinguishable, which is most likely due to the recent establishment of the West Atlantic populations from European founders. At Friday Harbor, sympatric morphs varying in their spination and spine inducibility were genetically indistinguishable, supporting the hypothesis that M. villosa is an induced phenotype of M. membranacea and not a distinct species in the northeastern Pacific. Since such phenotypic plasticity is common in cheilostome bryozoans, the morphospecies concept must be used with caution. Received: 31 August 1998 / Accepted: 10 August 1999  相似文献   

11.
Information about the genetic population structure of the Atlantic spotted dolphin [Stenella frontalis (G. Cuvier 1829)] in the western North Atlantic would greatly improve conservation and management of this species in USA waters. To this end, mitochondrial control region sequences and five nuclear microsatellite loci were used to test for genetic differentiation of Atlantic spotted dolphins in the western North Atlantic, including the Gulf of Mexico (n=199). Skin tissue samples were collected from 1994–2000. Significant heterozygote deficiencies in three microsatellite loci within samples collected off the eastern USA coast prompted investigation of a possible Wahlund effect, resulting in evidence for previously unsuspected population subdivision in this region. In subsequent analyses including three putative populations, two in the western North Atlantic (n=38, n=85) and one in the Gulf of Mexico (n=76), significant genetic differentiation was detected for both nuclear DNA (R ST=0.096, P≤0.0001) and mitochondrial DNA (Φ ST=0.215, P≤0.0001), as well as for all pair-wise population comparisons for both markers. This genetic evidence for population differentiation coupled to known biogeographic transition zones at Cape Hatteras, North Carolina and Cape Canaveral, Florida, USA, evidence of female philopatry, and preliminary support for significant genetic differences between previously documented morphotypes of Atlantic spotted dolphins in coastal and offshore waters all indicate that the biology and life history of this species is more complex than previously assumed. Assumptions of large, panmictic populations might not be accurate in other areas where S. frontalis is continuously distributed (e.g., eastern Atlantic), and could have a detrimental effect on long-term viability and maintenance of genetic diversity in this species in regions where incidental human-induced mortality occurs.
Lara D. AdamsEmail:
  相似文献   

12.
The ocean quahog, Arctica islandica (Linnaeus, 1767), is a commercially important bivalve found on continental shelves throughout much of the North Atlantic. To assess genetic subdivision in this species, we sequenced 385 nucleotides of the mitochondrial cytochrome b (cyt b) gene from 83 specimens collected from 12 localities between September 1998 and July 1999 (based on preliminary data, the Internal Transcribed Spacers, ITS, of the nuclear ribosomal repeat were not useful). The cyt b data delimited 11 haplotypes with 0.26 to 8.1% nucleotide difference (coded by 36 variable nucleotide positions) among them. Only three haplotypes were detected in 39 specimens collected along the USA coastline, compared to five haplotypes from nine Icelandic individuals. The western Atlantic populations ranging from Penobscot Bay (Maine, USA) to southern Virginia showed relatively low diversity and appeared genetically similar in that region. Based on the presence of shared haplotypes, AMOVA analyses, and phylogenetic reconstructions, Icelandic populations appear to be more genetically similar to western Atlantic populations than eastern Atlantic populations. Specimens from the Faroe Islands (n=4) show mixed affinities. These data are consistent with the hypothesis that a warm Holocene climatic optimum (ca. 7,500 years BP), and not glacial refugia, shaped the present-day genetic structure in A. islandica. Received: 18 January 2000 / Accepted: 26 June 2000  相似文献   

13.
Variations at 22 enzyme coding loci were surveyed in 11 populations of the oyster Ostrea edulis L., which were sampled between 1988 and 1990 along the Atlantic and Mediterranean coasts of Europe. Atlantic oyster beds suffered a steady decline during the last century, and restocking of beds with oysters of foreign origin has probably resulted in a high degree of interbreeding of natural oyster stocks from all Atlantic Europe. Our study confirms the low levels of genetic variability previously reported for the oyster populations from the Atlantic coasts, and extends it to the Mediterranean coasts. The locus arginine-kinase (ARK *) exhibited a high degree of interpopulation differentiation (F ST=0.289), resulting from extensive variation in gene frequencies along a geographical cline. However, the overall genetic differentiation between populations was slight, and similar to that reported for other local populations of bivalves (mean genetic distance between populations is 0.010, mean F ST=0.062). A general pattern of increasing differentiation along the coastline in an Atlantic-mediterranean direction emerged; but genetic differentiation among the Atlantic populations was not significantly lower than that observed among the Mediterranean populations. This and other results suggest that the effects of extensive transplantation of oysters among various areas in Europe are detectable only in some particular localities. The geographical distribution of low-frequency alleles suggests a restriction to gene flow outwards from the Mediterranean Sea, across the Straits of Gibraltar.  相似文献   

14.
15.
From a geographical survey of allozyme variation, a history of repeated trans-Arctic invasions since the Plio-Pleistocene is suggested for circumboreal bivalves of the Macoma balthica complex. A principal genetic subdivision, involving several nearly diagnostic loci and Nei's distance D=0.6, distinguishes the clams of the NE Pacific from those of the NE Atlantic. The Pacific taxon is however also present in Europe, in disjunct isolates in the Baltic Sea and White Sea basins. Nevertheless, these populations have marked Atlantic introgressive elements in their gene pools (ca. 30%). Two further population types are recognized, one in the St. Lawrence estuary, Quebec, the other in Varangerfjorden, NE Norway; the latter appears a mixture of Pacific and Atlantic components in almost equal proportions, in local genetic equilibrium (a hybrid swarm). Populations in temperate North America fall outside the circumboreal M. balthica complex discussed here (D=1.0), and are referred to M. petalum. In a scenario of the history and evolution of the M. balthica complex and the similarly subdivided Mytilus edulis complex, the divergence between Pacific and Atlantic taxa started after an initial introduction of Pacific ancestors to the Atlantic basin, enabled by the Pliocene opening of the Bering Strait. During the Pleistocene and Holocene, the ocean basins were, for the most part, effectively isolated, but occasional re-invasions have taken place, causing secondary contacts of the diverged bivalve types on the Atlantic coasts. The recently re-invaded Pacific taxa in northern Europe now seem to thrive only in the extreme marginal environments. Exact dating of the re-invasions is not possible from current data. Apart from the divergence through isolation, hybridization and introgression have significantly molded the present affinities within the M. balthica complex. A formal taxonomic treatment of reticulate and hybridizing lineages is problematic; yet to recognize the evolutionary and systematic diversity within the M. balthica complex, a subspecies distinction between the NE Atlantic clams and those from the Pacific, Baltic and White Sea basins is suggested.Communicated by L. Hagerman, Helsingør  相似文献   

16.
The patterns of genetic diversity and connectivity were investigated in Cucumaria frondosa, the most abundant sea cucumber in the North Atlantic, to assist in the management and conservation of this ecologically important marine invertebrate, which is the target of an emerging fishery. Mitochondrial DNA COI sequences of 334 C. frondosa were obtained and analyzed, mainly from its western North Atlantic range, where the commercial fishery is being developed, with complementary sampling in the mid- and eastern North Atlantic. Analysis of molecular variance showed no significant (P > 0.05) differences among subpopulations in the western region suggesting that it constitutes one panmictic population. The same analysis showed low, but significant differences between eastern and western Atlantic populations. Coalescent analyses using isolation with migration models and a Bayesian skyline plot indicated historical divergence and a general increase in population size prior to the last glacial maximum and highly asymmetric gene flow (nearly 100 times lower from west to east) between sea cucumbers from North America and Norway. Results suggest that subpopulations of C. frondosa within the western North Atlantic have been highly connected. We propose that aided by the high-connectivity local subpopulations can recover rapidly from natural (i.e., ice ages) or anthropogenic (i.e., overfishing) population declines through recruitment from deep refugia.  相似文献   

17.
Lineus ruber and L. viridis are common intertidal heteronemerteans found on the coasts of northern Europe and the east coast of North America. The two species resemble each other morphologically and were synonymised for many years prior to being separated on the basis of larval development. In this study, specimens of L. ruber and L. viridis were collected from sites along the west and southwest coast of Britain, northern France and the east coast of North America. The external morphology and allele frequencies of isozymes of the two species were compared from all sites. The external morphology of L. ruber and L. viridis was similar but they could generally be separated by colour. Allele frequencies for up to 13 enzyme loci between sympatric populations of L. ruber and L. viridis indicated that these two species are genetically very different (Nei's genetic identity=0.090 to 0.083). Allele-frequency data also indicated the presence of a third genetic type occurring sympatrically with populations of both L. ruber and L. viridis on the coasts of Britain and France but not on the coast of North America. Fixed differences in allele frequencies between populations of the third genetic type and sympatric populations of L. ruber and L. viridis were observed across multiple loci. Genetic identity between the third genetic type and sympatric populations of L. ruber and L. viridis were extremely low (Nei's genetic identity =<0.078). Such large genetic differences between populations indicate a barrier to gene flow and reproductive isolation. The aberrant type, which exhibits sufficient morphological variation to prevent individuals being distinguished from those of both L. ruber and L. viridis, therefore represents a separate species. The low genetic identities found in intrageneric comparisons of species found in this study have been found in other studies on nemerteans. They may indicate systematic problems within these groups or other phenomena such as morphological stasis.  相似文献   

18.
The genetic population structure of the highly migratory albacore (Thunnus alalunga) was investigated using restriction fragment length polymorphism (RFLP) analysis of the mitochondrial ATPase gene amplified by the polymerase chain reaction (PCR). 620 individuals comprising 13 geographically distant samples (ten Pacific, two Atlantic and the Cape of Good Hope) were surveyed between 1991 and 1994 with two restriction endonucleases (Mse I and Rsa I), resulting in seven haplotypes. No heterogeneity was observed in the distribution of haplotypes among the ten samples from the North and South Pacific, nor among the samples from North and South Atlantic and Cape of Good Hope. However, highly significant heterogeneity was evident among Atlantic and Pacific samples. Higher haplotypic diversity (h) was observed in the Pacific samples (0.59 to 0.69) than in the Atlantic and Cape samples (0.22 to 0.43). These results suggest greater gene flow between albacore of the northern and southern hemispheres (within oceans) than between the Atlantic and Pacific Oceans.  相似文献   

19.
Specimens of the abyssal grenadier Coryphaenoides armatus (Hector, 1875), from the western North Atlantic and eastern North Pacific Oceans were compared electrophoretically at 27 presumptive gene loci. At 6 of the 7 polymorphic loci there were only minor differences in allelic frequencies but a nearly fixed difference was found at one locus, phosphogluconate dehydrogenase. Eastern North Pacific grenadiers typically have a narrower interorbital space, a shorter dorsal interspace, more soft rays in the 1st dorsal fin (9–10 versus 8–9) and more pelvic fin rays (21–23 versus 18–21) than grenadiers from the western North Atlantic (as well as grenadiers from the eastern South Pacific, which were included in the biometric analysis). There is an apparent disjunction in the distribution of C. armatus in the eastern Pacific at the Gulf of Panamá which coincides with the change of morphology. It is suggested that North Pacific grenadiers comprise a subspecies, C. armatus variabilis Günther, 1878, which is morphologically distinct from the subspecies C. armatus armatus (Hector, 1875) of the other areas.  相似文献   

20.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号