首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The understanding of the global environmental multiphase distribution of persistent organic pollutants (POPs) as a result of the physico-chemical properties of the respective compounds is well established. We have analysed the results of a vertical transport of POPs from upper water layers (0-200 m) to the deepwater region (> 800 m) in terms of the contamination of the biophase in both water layers. The contents of persistent organochlorine compounds like polychlorinated biphenyls (PCBs) in fish living in the upper water layers of the North Atlantic and the South Atlantic, and at the continental shelf of California (Marine Sanctuary Monterey Bay and its deep-sea Canyon) are compared to the levels in deep-sea or bottom dwelling fish within the same geographic area. The deep-sea biota show significantly higher burdens as compared to surface-living species of the same region. There are also indications for recycling processes of POPs--in this case the PCBs--in the biophase of the abyss as well. It can be concluded that the bio- and geo phase of the deep-sea may act similarly as the upper horizons of forest and grasslands on the continents as an ultimate global sink for POPs in the marine environment.  相似文献   

2.
The understanding of the global environmental multiphase distribution of persistent organic pollutants (POPs) as a result of the physico-chemical properties of the respective compounds is well established. We have analysed the results of a vertical transport of POPs from surface water to deepwater in terms of the contamination of the biota living in the respective environmental compartments. Samples were taken from the North and the South Atlantic and from the uprising water region of the continental shelf of California (Marine Sanctuary Monterey Bay and its Canyon). The contents of persistent organochlorine pesticides (DDTs, chlordanes, toxaphenes, HCHs, and HCB) in surface-living fish are compared to those in deepwater fish of the same geographic area. The deepwater biota show significantly higher burdens as compared to surface-living species of the same region. There are also indications for recycling processes of POPs of the class of organochlorine pesticides in the biophase of the abyss as well. It can be concluded that the bio- and geophase of the deep-sea may act as an ultimate global sink for persistent semivolatile contaminants in the marine environment like the soil on the continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号