首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to increase the range of analytical techniques able to monitor ultimate degradation stages of degradable, biodegradable, and bioresorbable polymers, capillary zone electrophoresis (CZE) was used to analyze tentatively oligomers formed during thermal condensation of lactic, glycolic, anddl-3-hydroxybutyric acids. The influence of the buffer and of capillary coating are discussed in terms of electroosmotic flow. Typical analyses were first performed using a 0.1M borate buffer (pH 8.9) with anodic injection. In the case of lactic acid, seven peaks were well separated, while only three peaks were observed for glycolic acid. A more complex situation was found fordl-3-hydroxybutyric acid oligomers. The first five peaks were split. The major component of each doublet was attributed to hydroxy-terminated oligomers, whereas the satellite peaks were assigned to oligomers bearing a C=C double bond at the noncarboxylic terminus. CZE of pH-sensitive lactic acid oligomers was also performed in 0.05M phosphate buffer (pH 6.8) with cathodic injection after physical coating of the fused-silica capillary with DEAE-Dextran. The buffer-soluble fraction present in lactic acid oligomers was extracted from a dichloromethane solution. Extracts issued from different batches of lactic acid condensates gave a constant water-solubility pattern whose cutoff was at the level of the decamer. CZE was also used to monitor thein vitro aging of aqueous solutions of these water-soluble oligomers. The lactyllactic acid dimer appeared more stable than higher oligomers, thus showing that ultimate stages of the degradation did not proceed at random. These physicochemical characteristics were used to complement the degradation pathway based on diffusion of oligomers duringin vitro aging of large size lactic acid plates made by compression molding. CZE data showed that lactic acid was the only component which was released in the aqueous medium during degradation.Presented by C.B. at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, NH, USA.  相似文献   

2.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

3.
Chitosan oligomers because of its water solubility has some special physiological functions, such as binding lipid, affecting the mitogenic response, restraining the growth of tumors, and was widely used in cosmetics and health. H2O2/Gly (Glycine) series ionic liquids system, a new solvable-catalytic system, was an efficient clean process for preparation of chitosan oligomers. The effects of the anions of Gly series ionic liquids on the solubility and degradation for chitosan were investigated, and the results showed that [Gly]Cl aqueous solution was of good solubility and assistant degradation for chitosan. In additional, the mechanism for oxidative degradation of chitosan in ionic liquids (ILs) was studied. The effect on the property of chitosan oligomers catalyzed by H2O2, in two different kinds of solvents (HAc and [Gly]Cl) were compared. It was found that the performance of moisture absorption and retention of chitosan oligomers using ionic liquid aqueous solution as solvent was better than that using HAc aqueous solution as solvent, and even superior to that of hyaluronic acid. Furthermore, [Gly]Cl could be easily separated from the product and reused with only slight loss. It could provide an efficient and environmental friendly method for the preparation of chitosan oligomers in H2O2/ILs system.  相似文献   

4.
In this study, ozone treatment was used to improve the surface wettability of waste tire rubber (WTR) powders. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were performed in order to characterize the surface composition of the treated samples. The progress of surface modification was also monitored by contact angle measurements of different test liquids (water and liquid paraffin). The surface energy values were evaluated in terms of the Owens’ method and the contact angle data were compared with the results obtained by the surface analytical methods (i.e. FTIR and XPS measurements). These results showed that ozone treatment lead to a remarkable decrease in water contact angle owing to the implantation of oxygen-containing functional groups. Using XPS and FTIR, the oxygen-containing groups can be identified as C–O, O–C=O and C=O. With prolongation of ozone treatment time, WTR exhibited increasing oxygen-containing groups, surface energy and wettability.  相似文献   

5.
Poly(-alkanoates) derived from lactic acid enantiomers are known to degrade easily hydrolytically in aqueous media. The ability of two microorganisms, a filamentous fungus,Fusarium moniliforme, and a bacterium,Pseudomonas putida, to assimilate the degradation by-products of poly(lactic acid) (PLA), namely, lactic acid, lactyllactic acid dimers, and higher oligomers, was investigated in liquid culture. To distinguish the influence of chirality on bioassimilation, two series of substrates were considered which derived from the racemic and the L-form of lactic acid, respectively. The fate of these compounds was monitored by HPLC. Under the selected conditions,DL- andL-lactic acids were totally used by the two microorganisms regardless of the enantiomeric composition. Both microorganisms degraded the LL-dimer rather rapidly. However,F. moniliforme acted more rapidly thanP. putida. It is likely that the DD-dimer also biodegraded but at a slower rate, especially in the case of the fungi. Higher racemic oligomers were slowly assimilated by the two microorganisms, whereas higher L-oligomers appeared biostable probably because of their crystallinity. A synergistic effect was observed when both microorganisms were present in the same culture medium containing racemic oligomers.Presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995. Durham, New Hampshire.  相似文献   

6.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   

7.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

8.
Nickel-resistant bacteria isolated from underneath Ni-hyperaccumulators growing on serpentine soils were screened for production of polyhydroxyalkanoates. These rhizobacteria accumulated poly-3-hydroxybutyric acid [P(3HB)] accounting 3.9–67.7% of cell dry weight during growth in gluconate and/or glucose. Cupriavidus pauculus KPS 201 utilized only gluconate and accumulated about 67.7% P(3HB) while, Bacillus firmus AND 408 utilized both carbon sources for polymer synthesis. The isolates being resistant to Ni also accumulated substantial amount of P(3HB) when grown in presence of the heavy metal and this was revealed by transmission electron microscopic studies. Although B. firmus AND 408 produced only P(3HB) at higher concentrations of gluconate, C. pauculus KPS 201 synthesized copolymer of 3-hydroxybutyric acid (3HB) and 3-hydroxyvaleric acid (3HV) [P(3HB-co-3HV)]. In presence of 0.8% gluconate and 4 mM Ni, KPS 201 cells produced PHA amounting 81% CDW, which contained 76 and 24 mol% 3HB and 3HV monomers, respectively.  相似文献   

9.
Sediment cores collected in eutrophic subalpine Lake Bled (NW Slovenia) were analyzed sedimentologically in terms of grain size, mineralogy and sedimentation rates, and geochemically in terms of metals and nutrients. Surficial sediment is composed of dark gyttya type clayey silt with 5%–10% of organic matter. The sediment below is fine laminated and composed of homogenous silt and clayey silt: Mineralogically, low-Mg calcite prevails, followed by dolomite, quartz, partially of diatomaceous origin, and feldspar. Clay minerals are composed of muscovite/illite and chlorite. Authigenic minerals are pyrite and ‘lake chalk’ (low-Mg calcite). Lake sediment is especially polluted by Pb, Zn and P. Higher contents were found in the northwestern and eastern parts due to the particle input by local inflows. Increasing eutrophication and pollution, indicated by Cd, Cu, V, Cr, Co and total N and P enrichment in the top layers of the cores, started almost 100 years B.P., and especially 50 years ago.  相似文献   

10.
Degradation of post-consumer PLA to lactic acid was analysed in order to assess the economic feasibility of the PLA chemical recycling process. Hydrolysis of PLA, in batch reactor, was analysed in the temperature range of 443–473 K, under autogenous pressure and a constant PLA to water ratio (equal to approximately 0.11 by weight), without the use of a catalyst. The experimental results suggest that the complete degradation of PLA can be obtained using relatively low reaction-times with the production of a mixture containing the monomer and traces of the dimer of lactic acid. The overall process was modelled using a two-step process: bulk degradation of PLA (in the solid or molten phase) with the solubilisation of low molecular weight oligomers, and their subsequent hydrolysis in water (stabilization). The model describes the trend of oligomer concentrations in the aqueous phase and PLA conversion as a function of time with both high accuracy and agreement with experimental results.  相似文献   

11.
A series of polyhydroxyalkanoates (PHA), all containing 1% nucleating agent but varying in structure, were melt-processed into films through single screw extrusion techniques. This series consisted of three polyhydroxybutyrate (PHB) and three polyhydroxybutyrate-valerate (PHBV) resins with varying valerate content. Processing parameters of temperature in the barrel (165–173 °C) and chill rolls (60 °C) were optimized to obtain cast films. The gel-permeation chromatography (GPC) results showed a loss of 8–19% of the polymer’s initial molecular weight due to extrusion processing. Modulated differential scanning calorimetry (MDSC) displayed glass transition temperatures of the films ranging from −4.6 to 6.7 °C depending on the amount of crystallinity in the film. DSC data were also used to calculate the percent crystallinity of each sample and slightly higher crystallinity was observed in the PHBV series of samples. X-ray diffraction patterns did not vary significantly for any of the samples and crystallinity was confirmed with X-ray data. Dynamic mechanical analysis (DMA) verified the glass transition trends for the films from DSC while loss modulus (E′) reported at 20 °C showed that the PHBV (3,950–3,600 MPa) had the higher E′ values than the PHB (3,500–2,698 MPa) samples. The Young’s modulus values of the PHB and PHBV samples ranged from 700 to 900 MPa and 900 to 1,500 MPa, respectively. Polarized light microscopy images revealed gel particles in the films processed through single-screw extrusion, which may have caused diminished Young’s modulus and tensile strength of these films. The PHBV film samples exhibited the greatest barrier properties to oxygen and water vapor when compared to the PHB film samples. The average oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) for the PHBV samples was 247 (cc-mil/m2-day) and 118 (g-mil/m2-day), respectively; while the average OTR and WVTR for the PHB samples was 350 (cc-mil/m2-day) and 178 (g-mil/m2-day), respectively. Biodegradation data of the films in the marine environment demonstrated that all PHA film samples achieved a minimum of 70% mineralization in 40 days when run in accordance with ASTM 6691. For static and dynamic incubation experiments in seawater, microbial action resulting in weight loss as a function of time showed all samples to be highly biodegradable and correlated with the ASTM 6691 biodegradation data.  相似文献   

12.
Depolymerization of nylon 6 to produce ε-caprolactam using an environmentally friendly heteropoly acid catalyst was studied at temperatures between 553 and 603 K in water. The products of depolymerization were analyzed qualitatively and quantitatively by means of mass spectrometry and high-performance liquid chromatography. The results showed that the depolymerized product was mainly ε-caprolactam with a little 6-aminocaproic acid and oligomers. The phosphotungstic heteropoly acid used as a catalyst can improve the hydrolysis rate and yield of ε-caprolactam. The optimum hydrolysis conditions for ε-caprolactam yield were as follows: phosphotungstic heteropoly acid content, 3%; reaction temperature, 573 K; and reaction time, 85 min. Under these conditions, the yield of ε-caprolactam was 77.96%. In the temperature range 553–603 K, the activation energy of 3% phosphotungstic heteropoly acid-catalyzed depolymerization was evaluated as 77.38 kJ/mol, which is lower than the 86.64 kJ/mol value for no catalyst.  相似文献   

13.
Four umbric A horizons from acid forest soils were acidified in a batch type experiment and its effect in the Al pools of the solid phase analysed by means of selective dissolution methods. The results showed that Al release accounted for the consumption of 85–99% of the added protons, and causes a decrease of 2–33% of the ‘reactive’ Al pool of the soil solid phase. In these A horizons, inorganic non-crystalline Al and high stability Al-humus complexes are the main sources of the dissolved Al. The contribution of the complexes with intermediate stability only was relevant in the more acid horizon developed from phyllites (P18-A). The increase of equilibration time from 96 to 720 h did not caused significant differences in the decrease of the ‘reactive’ Al pool suggesting the acid neutralising reactions occurred in less than 96 h. In most cases the quantity of released Al is in agreement with the decrease of the different reactive Al pools of the solid phase.  相似文献   

14.
The feasibility of degrading 16 USEPA priority polycyclic aromatic (PAH) hydrocarbons (PAHs) with heat and Fe(II)-EDTA catalyzed persulfate oxidation was investigated in the laboratory. The experiments were conducted to determine the effects of temperature (i.e. 20 C, 30 C and 40 C) and iron-chelate levels (i.e., 250 mg/L-, 375 mg/L- and 500 mg/L-Fe(II)) on the degradation of dissolved PAHs in aqueous systems, using a series of amber glass jars as the reactors that were placed on a shaker inside an incubator for temperature control. Each experiment was run in duplicate and had two controls (i.e., no persulfate in systems). Samples were collected after a reaction period of 144 hrs and measured for PAHs, pH and sodium persulfate levels. The extent of degradation of PAHs was determined by comparing the data for samples with the controls. The experimental results showed that persulfate oxidation under each of the tested conditions effectively degraded the 16 target PAHs. All of the targeted PAHs were degraded to below the instrument detection limits (∼4 μ/L) from a range of initial concentration (i.e., 5 μ/L for benzo(a)pyrene to 57 μ/L for Phenanthrene) within 144 hrs with 5 g/L of sodium persulfate at 20 C, 30 C and 40 C. The data indicated that the persulfate oxidation was effective in degrading the PAHs and that external heat and iron catalysts might not be needed for the degradation of PAHs. The Fe(II)-EDTA catalyzed persulfate also effectively degraded PAHs in the study. In addition, the data on the variation of persulfate concentrations during the experiments indicated that Fe(II)-EDTA accelerated the consumption of persulfate ions. The obtained degradation data cannot be used to evaluate the influence of temperature and Fe(II) levels on the PAH degradation because the PAHs under each of the tested conditions were degraded to below the instrument detection limit within the first sampling point. However, these experiments have demonstrated the feasibility of degrading PAHs in aqueous systems with persulfate oxidation. Additional tests are being conducted to evaluate the effectiveness of treating PAHs in soils and obtaining the rate of degradation of PAHs with persulfate oxidation. Two sets of laboratory experiments were conducted to evaluate the ability of sodium persulfate in oxidizing real world PAH-contaminated soils collected from a Superfund site in Connecticut. The first set of soil sample were treated only with persulfate and to the second batch, mixture of persulfate and Fe(II)-EDTA solutions were added. The results of the second test showed that within 24 hours, 75% to 100% of the initial concentrations of seven PAH compounds detected in the soil samples were degraded by sodium persulfate mixed with FE(II)-EDTA.  相似文献   

15.
Different qualities of CMC were prepared from an agricultural residue (date palm rachis) and a marine waste (Posidonia oceanica). These starting lignocellulosic materials were used as such and after chemical pulping and bleaching. The carboxymethylation reaction was carried out in presence of NaOH (40%) and monochloroacetic acid (ClCH2COOH, MAC), in n-butanol as the reaction solvent. The substitution degrees (DS) of the obtained CMCs varied from 0.67 to 1.62 and between 0.98 and 1.86, for P. oceanica and date palm rachis, respectively. The CP-MAS 13C-NMR spectra of the prepared polyelectrolytes displayed the presence of the main peaks associated with cellulose macromolecules (C1–C6) and that corresponding to carboxyl functions at around 175 ppm. Unfortunately, the peak attributed to methylene groups neighbouring carboxyl moieties are overlapped by C2 and C3, which renders them hardly detectable. Nevertheless, it is worth noting that the CP-MAS 13C-NMR spectra revealed the presence of different signals originating from residual impurities (ca. 27 ppm), such as traces of lignin macromolecules (110–150 ppm) and methyl groups attributed to hemicelluloses. Work is in progress to establish a more efficient purification procedure, in order to have more accurate values of DS.  相似文献   

16.
This study was carried out to explore the possibility of making cement-bonded composite building products using eucalypt (Eucalyptus camaldulensis) and poplar (Populus deltoides). The experimental design consisted of three treatments—mixture of fibrous materials, cement and calcium chloride (CaCl2) contents. Some physical properties, vis. water absorption (WA) and thickness swelling (TS), were investigated. The ratio of woodwool : cement was 40:60 and 60:40 by weight. Results showed that, water uptake increased with increasing woodwool content. In addition, boards fully made with poplar woodwools had superior properties compared to the eucalypt and mixed woodwools. The presence of eucalypt woodwools in mixture of fibrous materials typically resulted in increase in TS and WA. It is interesting to note that a dose of 5% of CaCl2 by weight of cement can enhance the effect of cement. Application of Duncan’s Multiple Range Test for the mean values of the results showed that the effects of all variables and their interactions on the mechanical properties in terms of TS and WA were highly significant.  相似文献   

17.
The United States and the European Union each generate around 6900 million dry tons of sewage sludge annually. This is disposed of by land application, landfilling, incineration and other approaches. Reductive hydrothermal (HT) treatment refers here to simple aqueous systems heated and pressurized above 300 degrees C/100bar under anoxic and/or reducing conditions. The purpose of this study was to examine the HT treatment of municipal sewage sludge and infectious fecal microbial cultures with respect to waste volume reduction, biological sterilization, and the generation of usable hydrocarbon product mixtures. These endpoints from HT treatment also were compared to those from pyrolysis. HT at 400 degrees C/150bar transformed sewage sludge solids into complex gas phase (4%) and liquid (6%) hydrocarbon mixtures (approximately 11% combined yield), along with similar amounts (5%) of solid residues. HT products in the aqueous phase (e.g., alcohols) were present but not analysed. Viable mixed fecal cultures (10(9) colony forming units/mL) were completely sterilized by HT treatment, and a hydrocarbon mixture also was generated from the cells, but it was markedly different from that resulting from HT of the sludge. The hydrocarbon assemblage generated from the sludge included n-hydrocarbons (C(9)-C(20)) and alkyl substituted benzenes, phenols, and related compound series of higher mass (e.g., indanes, naphthalenes). Light aromatic parent compounds were significantly less abundant than their substituted C(1)-C(5) alkyl series and there was a paucity of N-, O- and S-heterocycles and polycyclic systems with more than three fused rings. This was different from the products of pyrolysis which were dominated by a relatively simple mixture of linear and branched hydrocarbons and their oxidized homologues (e.g., aldehydes).  相似文献   

18.
Copolyesters composed of aliphatic and aromatic compounds were synthesized by the polycondensation of 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, sebacic acid, adipic acid, and terephthalic acid. By applying an appropriate ratio of aliphatic to aromatic acids, the synthesized materials proved to be biodegradable, as was verified by several degradation test methods such as aqueous polymer suspension inoculated by a soil eluate (Sturm test), a soil burial test (at ambient temperature), and a composting simulation test at 60°C. The degradability of the polyester-copolymers (measured as weight loss) was investigated with respect to the aliphatic monomer components and the fraction of terephthalic acid. Excellent biodegradability was observed even for copolymers with a content of terephthalic acid up to 56 mol% (of the acid fraction) and melting points in the range up to 140°C. Degradation by chemical hydrolysis of the polyesters was determined independently and was found to facilitate microbial attack significantly only at higher temperatures. The findings demonstrate that biodegradable polymers with advantageous usage properties can easily be manufactured by conventional techniques from commodity chemicals (adipic acid, terephthalic acid, and ethylene glycol or 1,4-butanediol).Dedicated to Prof. J. Klein's 60th birthday.  相似文献   

19.

In this study, poly-lactic acid (PLA) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBH) were pyrolyzed at various temperatures (300, 350, 400, 500, 600, and 700 °C) and heating rates (5, 10, 20, 30, and 40 °C min−1) using a pyrolysis–gas chromatograph/mass spectrometer (Py–GC/MS). The results revealed that the main pyrolysis products of PLA were acetaldehyde, lactide (including meso-lactide and d-, l-lactide), and oligomers. Crotonic acid and its oligomers accounted for most of the PHBH pyrolyzates. The pyrolysis temperature significantly correlated with the product distribution, but the heating rate had a small effect on the product distribution. Lactide and crotonic acid were two kinds of high-value chemicals, and their highest yields were obtained at 400 and 600 °C with 29.7 and 72.6 area %, respectively. Secondary reactions could not be neglected at 700 °C, and acetaldehyde and crotonic acid decreased to 65.0 and 69.6 area %, respectively. These results imply that pyrolyzate selectivity can be controlled by temperature management during pyrolysis.

  相似文献   

20.
In this study, a biodegradable composite consisting of a degradable continuous cellulosic fiber and a degradable polymer matrix—poly(3-hydroxybutyrate)-co-poly(3-hydroxyvalerate (PHB/V with 19% HV)—was developed. The composite was processed by impregnating the cellulosic fibers on-line withPHB/V powder in a fluidization chamber. The impregnated roving was then filament wound on a plate and hot-pressed. The resulting unidirectional composite plates were mechanically tested and optically characterized by SEM. The fiber content was 9.9 ±0.9 vol% by volumetric determination. The fiber content predicted by the rule of mixture for unidirectional composites was 13.8 ±1.4 vol%. Optical characterization showed that the fiber distribution was homogeneous and a satisfactory wetting of the fibers by the matrix was achieved. Using a blower to remove excess matrix powder during processing increased the fiber content to 26.5 ±3.3 vol % (volumetric) or 30.0 ±0.4 vol% (rule of mixture). The tensile strength of the composite parallel to the fiber direction was 128 ±12 MPa (10 vol% fiber) up to 278 ±48 MPa (26.5 vol% fiber), compared to 20 MPa for the PHB/V matrix. The Young’s modulus was 5.8 ±0.5 GPa (10 vol% fiber) and reached 11.4 ±0.14 GPa (26.5 vol% fiber), versus 1 GPa for the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号