首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

3.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

4.
<正>河口地区是遭受气候变化影响最为严重的区域之一。密集的人口、繁荣的经济使得河口城市根据当地的气候变化威胁制定相应的适应策略变得尤为重要和紧迫。英国伦敦、美国纽约和新奥尔良、日本东京、加拿大温哥华等国际重要河口城市已经制定了详尽的适应气候变化策略,其中有很多有益的经验值得我国的河口城市学  相似文献   

5.
Climate change requires reconsideration of flood risk management strategies. Cost-benefit analysis (CBA), an economic decision-support tool, has been widely applied to assess these strategies. This paper aims to describe and discuss probabilistic extensions of CBA to identify welfare-maximising flood risk management strategies under climate change. First, uncertainty about the changes in return periods of hydro-meteorological extremes is introduced by probability-weighted climate scenarios. Second, the analysis is extended by learning about climate change impacts. Learning occurs upon the probabilistic arrival of information. We distinguish between learning from scientific progress, from statistical evidence and from flood disasters. These probabilistic extensions can be used to analyse and compare the economic efficiency and flexibility of flood risk management strategies under climate change. We offer a critical discussion of the scope of such extensions and options for increasing flexibility. We find that uncertainty reduction from scientific progress may reduce initial investments, while other types of learning may increase initial investments. This requires analysing effects of different types of learning. We also find that probabilistic information about climate change impacts and learning is imprecise. We conclude that risk-based CBA with learning improves the flexibility of flood risk management strategies under climate change. However, CBA provides subjective estimates of expected outcomes and reflects different decision-maker preferences than those captured in robustness analyses. We therefore advocate robustness analysis in addition to, or combined with, cost-benefit analysis to support local investment decisions on flood risk reduction and global strategies on allocation of adaptation funds for flood risk management.  相似文献   

6.
In this study, an integrated simulation-based allocation modeling system (ISAMS) is developed for identifying water resources management strategies in response to climate change. The ISAMS incorporates global climate models (GCMs), a semi-distributed land use-based runoff process (SLURP) model, and a multistage interval-stochastic programming (MISP) approach within a general framework. The ISAMS can not only handle uncertainties expressed as probability distributions and interval values but also reveal climate change impacts on water resources allocation under different projections of GCMs. The ISAMS is then applied to the Kaidu-kongque watershed with cold arid characteristics in the Tarim River Basin (the largest inland watershed basin in China) for demonstrating its efficiency. Results reveal that different climate change models corresponding to various projections (e.g., precipitation and temperature) would lead to changed water resources allocation patterns. Variations in water availability and demand due to uncertainties could result in different water allocation targets and shortages. A variety of decision alternatives about water allocations adaptive to climate change are generated under combinations of different global climate models and ecological water release plans. These findings indicate that understanding the uncertainties in water resources system, building adaptive methods for generating sustainable water allocation patterns, and taking actions for mitigating water shortage problems are key adaptation strategies responding to climate change.  相似文献   

7.
Mitigation and Adaptation Strategies for Global Change - This study investigates the impact of climate change on spring and summer maize (Zea mays) yield and evaluates several adaptation measures...  相似文献   

8.
9.
Development and evaluation of mitigation strategies are fundamental to manage climate change risks. This study was built on (1) quantifying the response of maize (Zea mays L.) grain yield to potential impacts of climate change and (2) investigating the effectiveness of changing sowing date of maize as a mitigation option for Khorasan Province which is located in northeast of Iran. Two types of General Circulation Models (GCM: (United Kingdom Met Office Hadley Center :HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1) at four locations (Mashhad, Birjand, Bojnourd and Sabzevar) employed in this study. Long Ashton Research Station-Weather Generator (LARS-WG) was employed for generating the future climate. The Cropping System Model (CSM)-CERES-Maize was used for crop growth simulation under projected climate conditions. The results showed the simulated grain yields of maize gradually would decrease (from −1% to −39%) during future 100 years compared to baseline under different scenarios and two GCM at all study locations. The simulation results suggested that delayed sowing date from May to June at all study locations, except Sabzevar location is the most effective mitigation option for avoiding thermal stress at end of growth period. In addition, shifting in sowing date to March or April will be beneficial in terms of obtaining higher yields in Sabzevar. Grain yield did not show special trend from north to south of Khorasan Province in the future climate. In general, change of sowing date may be quite beneficial to mitigate climate change impacts on grain yield of maize in northeast of Iran.  相似文献   

10.
The negative impact of climate change on crop production is alarming as the demand for food is expected to increase in coming years, at a rate of about 2 percent a year. Wet season rice (Oryza sativa) followed by mustard (Brassica juncea) is one of the prominent cropping sequences in Eastern India. Descreases in their productivity due to climate change will not only hamper the regional food security but also affect the global economy. Considering the fact, the present study aims to assess the impact of climate change on productivity of wet-season rice and mustard and to evaluate the effectiveness of agronomic adjustment as adaptation options. Crop growth simulation model (CGSM) is a very effective tool to predict the growth and yield of a crop. One CGSM, namely InfoCrop (Generic Crop Model), was calibrated and validated for the said crops for West Bengal State, Eastern India. After validation, the model was used to predict the yield under elevated thermal condition (1 and 3 °C rise over normal temperature). Moreover, the future weather situation as predicted by PRECIS (Providing Regional Climates for Impacts Studies) model was used as weather input of the CGSM and the yield was predicted for ten selected locations of West Bengal for the year 2025 and 2050. It was observed that the average yield reduction of the wet-season rice would be in the tune of about 20.0 % for 2025 and 27.8 % for 2050. The mustard yield of West Bengal may be reduced by 20.0 to 33.9 % for the year 2025 and up to 40 % for 2050. It was concluded that the negative impact of climate change on mustard grown in winter season will be more pronounced compared to wet-season rice. Adjustment of sowing time will be the simplest and effective adaptation option for both rice and mustard. Increased rate of nutrient application can sustain the rice yield under future climate. The older seedling at the time of transplanting of wet-season rice and increased seed rate of mustard were proved less effective.  相似文献   

11.
Adaptation options in agriculture to climate change: a typology   总被引:9,自引:0,他引:9  
Adaptation in agriculture to climate change is important for impact andvulnerability assessment and for the development of climate change policy. A wide variety of adaptation options has been proposed as having thepotential to reduce vulnerability of agricultural systems to risks related toclimate change, often in an ad hoc fashion. This paper develops atypology of adaptation to systematically classify and characterize agriculturaladaptation options to climate change, drawing primarily on the Canadiansituation. In particular, it differentiates adaptation options in agricultureaccording to the involvement of different agents (producers, industries,governments); the intent, timing and duration of employment of theadaptation; the form and type of the adaptive measure; and the relationshipto processes already in place to cope with risks associated with climatestresses. A synthesis of research on adaptation options in Canadianagriculture identifies four main categories: (i) technological developments,(ii) government programs and insurance, (iii) farm production practices,and (iv) farm financial management. In addition to these `directadaptations', there are options, particularly information provision, that maystimulate adaptation initiatives. The results reveal that most adaptationoptions are modifications to on-going farm practices and public policydecision-making processes with respect to a suite of changing climatic(including variability and extremes) and non-climatic conditions (political,economic and social). For progress on implementing adaptations to climatechange in agriculture there is a need to better understand the relationshipbetween potential adaptation options and existing farm-level andgovernment decision-making processes and risk management frameworks.  相似文献   

12.
This paper addresses the interactions between the AIDS epidemic and climate change in southern Africa, particularly as they impact on food security. An assessment was undertaken through a comprehensive literature review. Understanding the underlying causes of regional food insecurity inevitably means understanding the role of the AIDS epidemic and increasingly climate change amongst other stressors. AIDS cuts through household and community level capacity, as well as the capacity of key facilitators of the adaptation process including state extension services and civil society organisations. The main argument of the paper is that adaptation to climate change must explicitly factor in the existing and long-term effects of the epidemic. While calls for embracing adaptation abound, little is being done to assess and strengthen the organisational capacity of institutions, which should play leading roles in any attempt to help prepare for a changing climate. In particular the capacity of key agencies has been undermined by the AIDS epidemic. This reiterates the need for a multisectoral approach and building bridges between agriculture and health sectors to ensure longer term support to livelihoods where HIV and hunger coexist, often overlaid by climate change.  相似文献   

13.
Meeting the growing demand for food in the future will require adaptation of water and land management to future conditions. We studied the extent of different adaptation options to future global change in the Mediterranean region, under scenarios of water use and availability. We focused on the most significant adaptation options for semiarid regions: implementing irrigation, changes to cropland intensity, and diversification of cropland activities. We used Conversion of Land Use on Mondial Scale (CLUMondo), a global land system model, to simulate future change to land use and land cover, and land management. To take into account future global change, we followed global outlooks for future population and climate change, and crop and livestock demand. The results indicate that the level of irrigation efficiency improvement is an important determinant of potential changes in the intensity of rain-fed land systems. No or low irrigation efficiency improvements lead to a reduction in irrigated areas, accompanied with intensification and expansion of rain-fed cropping systems. When reducing water withdrawal, total crop production in intensive rain-fed systems would need to increase significantly: by 130% without improving the irrigation efficiency in irrigated systems and by 53% under conditions of the highest possible efficiency improvement. In all scenarios, traditional Mediterranean multifunctional land systems continue to play a significant role in food production, especially in hosting livestock. Our results indicate that significant improvements to irrigation efficiency with simultaneous increase in cropland productivity are needed to satisfy future demands for food in the region. The approach can be transferred to other similar regions with strong resource limitations in terms of land and water.  相似文献   

14.
Climate change is expected to adversely affect agricultural production in Africa. Because agricultural production remains the main source of income for most rural communities in the region, adaptation of the agricultural sector is imperative to protect the livelihoods of the poor and to ensure food security. A better understanding of farmers’ perceptions of climate change, ongoing adaptation measures, and the decision-making process is important to inform policies aimed at promoting successful adaptation strategies for the agricultural sector. Using data from a survey of 1800 farm households in South Africa and Ethiopia, this study presents the adaptation strategies used by farmers in both countries and analyzes the factors influencing the decision to adapt. We find that the most common adaptation strategies include: use of different crops or crop varieties, planting trees, soil conservation, changing planting dates, and irrigation. However, despite having perceived changes in temperature and rainfall, a large percentage of farmers did not make any adjustments to their farming practices. The main barriers to adaptation cited by farmers were lack of access to credit in South Africa and lack of access to land, information, and credit in Ethiopia. A probit model is used to examine the factors influencing farmers’ decision to adapt to perceived climate changes. Factors influencing farmers’ decision to adapt include wealth, and access to extension, credit, and climate information in Ethiopia; and wealth, government farm support, and access to fertile land and credit in South Africa. Using a pooled dataset, an analysis of the factors affecting the decision to adapt to perceived climate change across both countries reveals that farmers were more likely to adapt if they had access to extension, credit, and land. Food aid, extension services, and information on climate change were found to facilitate adaptation among the poorest farmers. We conclude that policy-makers must create an enabling environment to support adaptation by increasing access to information, credit and markets, and make a particular effort to reach small-scale subsistence farmers, with limited resources to confront climate change.  相似文献   

15.
The Cameroonian agricultural sector, a critical part of the local ecosystem, is potentially vulnerable to climate change raising concerns about food security in the country’s future. Adaptations policies may be able to mitigate some of this vulnerability. This article investigates and addresses the issue of selected adaptation options within the context of Cameroonian food production. A methodology is applied where transient diagnostics of two atmosphere–ocean general circulation models, the NASA/Goddard Institute GISS and the British HadCM3, are coupled to a cropping system simulation model (CropSyst) to simulate current and future (2020, 2080) crop yields for selected key crops (bambara nut, groundnut, maize, sorghum, and soybean) in eight agricultural regions of Cameroon. Our results show that for the future, substantial yield increases are estimated for bambara groundnut, soybean and groundnut, while little or no change or even decreases for maize and sorghum yields, varying according to the climate scenario and the agricultural region investigated. Taking the “no regrets” principle into consideration, we explore the advantages of specific adaptation strategies specifically for three crops viz. maize, sorghum and bambara groundnut, under GISS A2 and B2 marker scenarios only. Changing sowing dates may be ineffective in counteracting adverse climatic effects because of the narrow rainfall band that strictly determines the timing of farm operations in Cameroon. In contrast, the possibility of developing later maturing new cultivars proved to be extremely effective in offsetting adverse impacts, giving the highest increases in productivity under different scenario projections without management changes. For example, under climate change scenario GISS A2 2080, a 14.6% reduction in maize yield was converted to a 32.1% increase; a 39.9% decrease in sorghum yield was converted to a 17.6% increase, and for bambara groundnut (an under-researched and underutilised African legume), yields were almost trebled (37.1% increase above that for sowing date alone (12.9%)) due to increase length of growing period and the positive effects of higher CO2 concentrations. These results may better inform wider studies and development strategies on sustainable agriculture in the area by providing an indication as to the potential direction in shifts in production capabilities. Our approach highlights the benefit of using models as tools to investigate potential climate change impacts, where results can supplement existing knowledge. The results provide useful guidance and motivation to public authorities and development agencies interested in food security issues in Cameroon and elsewhere.  相似文献   

16.
Climate variability and change mitigation and adaptation policies need to prioritize land users needs at local level because it is at this level that impact is felt most. In order to address the challenge of socio-economic and unique regional geographical setting, a customized methodological framework was developed for application in assessment of climate change vulnerability perception and adaptation options around the East African region. Indicators of climate change and variability most appropriate for the region were derived from focused discussions involving key informants in various sectors of the economy drawn from three East African countries. Using these indicators, a structured questionnaire was developed from which surveys and interviews were done on selected sample of target population of farming communities in the Mt. Kenya region. The key highlights of the questionnaire were vulnerability and adaptation. Data obtained from respondents was standardized and subjected to multivariate and ANOVA analysis. Based on principle component analysis (PCA), two main vulnerability categories were identified namely the social and the bio-physical vulnerability indicators. Analysis of variance using Kruskal-Wallis test showed significant statistical variation (P ≤ 0.05) in the perceived vulnerability across the spatial distribution of the 198 respondents. Three insights were distinguished and were discernible by agro-ecological zones. Different vulnerability profiles and adaptive capacity profiles were generated demonstrating the need for prioritizing adaptation and mitigation efforts at local level. There was a high correlation between the bio-physical and social factor/livelihood variables that were assessed.  相似文献   

17.
18.
It is now widely accepted that climate change is happening and that future changes will impact on many aspects of society, including agriculture. To maintain food supplies, the agricultural industry must address climate change adaptation. Key to this is the attitudes of those within the industry likely to have responsibility for adapting. This study investigated stakeholder attitudes towards adaptation to climate change in the livestock industry. Findings reveal four attitudinal groups. First, there is a ‘farmer-focused group’ that has a positive attitude about the ability of livestock farmers to adapt to climate change, but that also has the opinion that they will need additional support to adapt. Second, there is an ‘incentive for enterprise, anti-GM (genetic modification) group’ with an attitudinal position stressing that the government should have a role in implementing regulations and providing finance. This group has a negative attitude towards GM technology and does not think it will be the answer to climate change. Third, there is an ‘information and education group’ whose attitude is that the provision of information is crucial for ensuring that the livestock industry adapts. Fourth, there is a ‘pro-technology group’ who have a positive attitude towards GM technology and who are therefore willing to embrace it as the route to adaptation. Three of these four groups favour soft adaptations that maintain flexibility within the system, and only the fourth is of the opinion that adaptive capacity is not an issue and that the industry is ready to implement hard adaptations.  相似文献   

19.
20.
This paper identifies the literature that deals with adaptation to climate change in the transport sector. It presents a systematic review of the adaptations suggested in the literature. Although it is frequently claimed that this socially and economically important sector is particularly vulnerable to climate change, there is comparatively little research into its adaptation. The 63 sources we found are analysed following an action framework of adaptation. This distinguishes different adaptational functions and means of adaptation. By an open coding procedure, a total of 245 adaptations are found and classified. The paper shows a broad diversity of interdependent actors to be relevant—ranging from transportation providers to public and private actors and households. Crucial actors are hybrid in terms of being public or private. A substantial share of the identified adaptations follows a top-down adaptation policy pattern where a public or hybrid operator initiates action that affects private actors. Most of the exceptions from this pattern are technical or engineering measures. Identified adaptations mostly require institutional means, followed by technical means, and knowledge. Generally, knowledge on adapting transport to climate change is still in a stage of infancy. The existing literature either focuses on overly general adaptations, or on detailed technical measures. Further research is needed on the actual implementation of adaptation, and on more precise institutional instruments that fill the gap between too vague and too site-specific adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号