首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
若尔盖高原是黄河上游主要的水源补给地,也是我国重要的生态安全屏障区,但近年来由于超载过牧、气候变化、鼠害等原因出现了严重的沙化问题.通过比较分析合理放牧、围封禁牧以及自然恢复3种恢复措施对若尔盖典型沙化草地植物群落结构、生物量和土壤理化性质的恢复效果.结果显示,恢复6年后,自然恢复草地恢复效果不明显,而合理放牧草地恢复效果最好.与自然恢复和围封禁牧恢复草地相比,(1)合理放牧使得草地植物群落盖度、物种丰富度、地上生物量和地下生物量显著增加,分别为93%、9、396.41 g/m~2和693.4 g/m~2;(2)合理放牧恢复草地土壤容重、pH显著降低;含水量、最大持水量、可溶性全氮、硝态氮、可溶性有机氮和可溶性有机碳显著增加.本研究表明合理放牧有利于沙化草地更快恢复,建议制定相关标准在适当区域进行应用和推广.  相似文献   

2.
若尔盖高寒湿地表层土壤有机碳空间分布特征   总被引:7,自引:0,他引:7  
高俊琴  欧阳华  张锋  王春梅 《生态环境》2007,16(6):1723-1727
若尔盖高寒湿地是世界上著名的高原湿地,分布着我国面积最大的泥炭地,土壤有机碳储量十分丰富,但其空间分布特征尚不清楚。运用野外调查采样、室内分析与地理信息系统的空间分析方法,对若尔盖高寒湿地表层土壤有机碳的空间分布特征以及碳密度和碳储量进行了研究。结果表明,若尔盖区域表层土壤有机碳含量高的地方分布于沼泽集中或密集的地方,例如年保也则沼泽区,阿当乔沼泽区,牙哥曲沼泽和龙日坝沼泽等。黑河流域表层土壤有机碳含量普遍高于白河流域,这也和黑河流域水系较多,沼泽率高于白河流域有关。从垂直分布上来看,很多地方有机碳含量在10~20cm深度要大于0~10cm深度的有机碳含量,20~30cm的有机碳含量最少。表层土壤有机碳密度与有机碳含量有密切关系,其空间分布格局相似,有机碳含量高的地方有机碳密度也高,且黑河流域的值明显高于白河流域,有机碳密度值变化范围在0~105kg·m-2之间,其中湿地土壤有机碳密度变化于21.5~105kg·m-2之间。  相似文献   

3.
研究高寒草地的植物生态化学计量特征对认识极端气候背景下的草地生态系统功能与服务具有重要的意义. 选择羌塘高原高寒草地作为研究区,分析东西走向60个样点植物地上、地下部分的碳(C)、氮(N)含量与C:N的分布特征,及其各自的主要驱动因素. 结果表明:高寒草地植物地上部分C、N含量(38.22%、1.82%)均高于地下部分(31.11%、1.15%),但C:N(22.08)却小于地下部分(28.88),且地上部分C含量、C:N与地下部分存在显著性差异(P 〈 0.05). 干燥指数与植物地上部分C含量(R^2 = 0.072,P 〈 0.05)以及C:N(R^2 = 0.15,P 〈 0.005)呈负相关关系,却与植物地下部分C:N(R^2 = 0.53,P 〈 0.001)呈正相关关系;此外,年均降水量(R^2 = 0.13,P 〈 0.005)与地上部分C含量呈负相关关系,总生物量(R^2 = 0.13,P 〈 0.01)及植被总盖度(R^2 = 0.12, P 〈 0.01)与地下部分C含量呈正相关关系;海拔与地上部分C:N亦呈正相关关系(R 2= 0.15,P 〈 0.005),而年均温却与地下部分C:N呈负相关关系(R^2 = 0.31,P 〈 0.001). 可见,水热条件是影响羌塘高原植物地上、地下C含量以及C:N差异的主要因素,而干燥指数可以作为较好的度量指标. (图7 表1 参46)  相似文献   

4.
选取了海北高寒草甸、那曲高寒草原和当雄高寒湿地3种典型高寒草地生态系统类型为研究对象,采集了表层0~10 cm土壤,在实验室内进行可控温度下的碳矿化培养实验。结果表明,青藏高原土壤碳矿化在不同高寒草地类型间存在显著差异(P≤0.05)。在较低的温度下,高寒湿地土壤的碳矿化速率显著低于高寒草甸土壤,而温度在15℃左右时,高寒湿地土的碳矿化速率略高于高寒草甸土壤,当温度处于较高的水平时(〉20℃),高寒湿地土壤碳矿化速率远高于高寒草甸土壤,高寒湿地土壤碳矿化的Q10显著大于高寒草甸。无论是低温还是较高的温度,高寒草原土壤碳矿化速率最低,数值范围也最窄。高寒草甸和高寒湿地土壤碳矿化均受温度的显著影响(P≤0.05),其速率均跟温度呈现一级指数函数方程关系,而高寒草原土壤碳矿化速率与温度间未呈现明显的函数关系,但不同温度间的土壤碳矿化速率存在显著差异。氮素输入对高寒草甸和高寒湿地土壤碳矿化的影响不明显,但显著促进了高寒草原土壤碳矿化作用。  相似文献   

5.
黄河源区退化高寒草地土壤种子库:种子萌发的数量和动态   总被引:13,自引:0,他引:13  
对青藏高原黄河源区不同退化程度高寒草地的土壤种子库土样用土壤分析筛进行浓缩,并以萌发法分析土壤种子库萌发种子数量和动态.结果表明,孔径0.25~2 mm的土壤分析筛分离土样中萌发种子可达萌发种子总量的85%~97%,而小于0.25 mm的土样中未发现种子.因此,用0.25 mm孔径大小的土壤筛对高寒草地土壤种子库土样进行大规模浓缩是一种方便、可靠的方法.4种不同退化程度高寒草地(A:未退化草甸;B:轻度退化草甸;C:中度退化草甸;D:重度退化草甸)的土壤种子库在实验室条件下萌发的种子数量分别为:A 1 194~3 744粒/m2,平均2 421.3粒/m2;B 5 376~1 0912粒/m2,平均7 786.7粒/m2;C 2 304~1 3216粒/m2,平均8 695.5粒/m2;D 4 768~12 352粒/m2,平均8 125.9粒/m2.除样地A外,其它3个样地的可萌发种子数量差异不大.单子叶植物种子在培养到d 10左右开始萌发,双子叶植物在5~7 d内开始萌发,前者3 wk后基本不再萌发,后者5 wk左右停止萌发.4个样地土壤种子库种子萌发主要集中在第2~3周,并表现出近似单峰型格局.图1表3参39  相似文献   

6.
为促进沿海合理营林和碳库平衡,基于对福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局.结果表明,尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68、431.89-464.90、472.93-505.10 g/kg.相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P〈0.05).不同林分间乔木层的碳储量表现为木麻黄(32.89 t/hm^2)〉纹荚相思(31.33 t/hm^2)〉尾巨桉(30.20 t/hm^2),其中,乔木层各器官碳储量均以树干(10.92 t/hm^2、10.36 t/hm^2、15.00 t/hm^2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t/hm^2)〉纹荚相思(6.19 t/hm^2)〉木麻黄(4.57 t/hm^2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t/hm^2)〉纹荚相思(7.31 t/hm^2)〉尾巨桉(6.42 t/hm^2).这3种人工林生态系统总碳储量表现为木麻黄(45.48 t/hm^2)〉纹荚相思(44.83 t/hm^2)〉尾巨桉(43.04 t/hm^2),且碳储量分布格局均为乔木层〉土壤层〉凋落物层〉草本层.因此,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄都是很好的固碳树种.  相似文献   

7.
以野外样地调查和室内分析法研究了三江源区高寒小嵩草草甸不同退化演替阶段群落中土壤有机碳和微生物量碳的变化.结果表明,放牧活动明显地影响了土壤有机碳和微生物量碳的含量.不同退化演替阶段期间,高寒小嵩草草甸土壤有机碳、微生物量碳含量在0~10 cm土层明显较高,且随着退化程度的加剧,分布在0~40 cm土层的土壤有机碳、微生物量碳含量明显降低;不同退化演替阶段,高寒小嵩草草甸由于家畜过度的啃食与践踏,不仅使得植物群落发生了逆向演替,而且土壤的肥力水平显著地下降,土壤向退化方向发展;高寒草甸的退化将使土壤有机质大量流失,氮素损失严重.随着退化演替过程的进行,高寒草甸土壤质量和土壤营养的持续供给能力逐渐退化,土壤有机碳和土壤微生物量碳含量也随放牧强度增加而迅速降低;相关分析表明,土壤有机碳和土壤微生物量碳与土壤含水量、土壤有机质、土壤速效氮呈显著正相关关系(P<0.05),说明土壤微生物量碳可作为衡量土壤有机碳变化的敏感指标,而土壤有机碳和微生物量碳含量可作为衡量土壤肥力和土壤质量变化的重要指标.  相似文献   

8.
陆地生态系统碳循环研究是全球变化与地球科学研究领域的前沿与热点问题,准确地评估陆地生态系统碳储量和碳汇量是估算未来大气 CO2浓度,预测气候变化及其对陆地生态系统影响的关键。已有相关研究多集中于对区域生态系统碳储量和碳汇量的量的估算,而缺乏针对时间尺度上的变化过程的分析,以及对变化特征空间差异性的分析。本研究基于MODIS NPP数据,结合土地利用数据及土壤有机碳密度分布数据,对三江源地区2000─2010年草地生态系统碳储量时空变化特征进行了分析,同时,基于MODIS GPP数据及China FLUX和America FLUX数据,建立草地生态系统呼吸估算模型,对其碳汇量的时空变化特征进行了分析,以期明确该地区的碳储存能力及其变化过程,为该区域草地生态系统保护和管理提供科学依据。研究结果表明:(1)三江源地区草地生态系统总碳储量为53.38×108 t,平均碳密度为14.94 kg·m-2(以C计)。土壤和植被碳储量分别为53.07×108 t和0.31×108 t,平均碳密度分别为14.85 kg·m-2和86.77 g·m-2。(2)近10多年来,三江源地区草地生态系统多年平均碳汇量为0.4×108 t,单位面积平均碳汇量为86.80 g·m-2·a-1(以C计),表明该地区草地生态体统是一个碳汇。(3)2000年以来,三江源地区草地生态系统总碳储量及总碳汇量均呈波动增加趋势,碳汇功能有所增强。(4)三江源地区草地生态系统碳储量及碳汇量的空间分布格局及其变化趋势的空间分布均呈现明显的空间差异性。(5)MODIS GPP/NPP数据能够支撑较大尺度草地生态系统碳储量及碳汇量格局与变化趋势分析,较传统方法更为便捷高效。  相似文献   

9.
河口水体中硝化微生物的化能自养固碳(DCF)对碳氮循环过程有着重要影响,但目前关于河口水体氨氧化微生物对DCF过程的贡献鲜见报道。以长江口为研究区,利用14C和15N同位素示踪技术,分别测定了大潮和小潮期间水体DCF和硝化速率,并通过实时荧光定量PCR技术量化了相关功能基因丰度。结果表明,长江口水体大小潮期间,DCF和硝化速率分别介于170.72-1 007.35 nmol·L-1·d-1和1.45-70.75 nmol·L-1·h-1,呈现大潮速率相对较高,小潮速率低的变化特征,且底层水体DCF和硝化速率显著高于表层水体。水体中铵盐和可溶性无机碳浓度是影响DCF和硝化速率的关键环境因子。定量PCR结果表明,大潮和小潮时cbbL基因丰度分别为0.40×108-3.40×108 copies·L-1和0.49×108-2.27×108 copies·...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号