首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 IntroductionChinaisundergoingsubstantialandrapidchangesinitssocietyanditseconomicpolicies.Amongvariousenvironmentalproblems,waterpollutionisoneofthemostcriticalissuesfacingChinatoday.Thesepollutantspoisonaquaticorganismsandaccumulateinfishandothere…  相似文献   

2.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

3.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

4.
Metallothionein (MT) has a great capacity of binding heavy metals showing an interesting connection with metal toxicology, as a biochemical marker for environmental metal pollution. Anino-exchange high per formance liquid chromatography (HPLC) was used to isolate and quantitate MT in livers of minks which were contaminated with heavy metals. MT isoforms (MT-I and MT-II) were eluted at approximately 11.3 and 14.3 min respectively from a DEAE-5 PW anion-exchange column with a Tris-HCl buffer (0.01 -0.25 mol/L, pH 8.6) and detected by UV absorbance at 254 nm. The cadmium concentrations in mink liver MT elutkms were determined by graphite furnace atomic absorption spectrometry (GFAAS) . Obvious increase in liver MT-I concentration rather than liver MT-II was found when the minks were contaminated by feeding contaminated fish captured from the heavy metal-polluted river. The cadmium concentration in mink liver MT-I also increased to some extent as the contaminated level increased.  相似文献   

5.
DistributionofheavymetalsintheGrandCanal(Hangzhousection)anditscontributingfactorsWengHuanxin,ZhangDengrongDepartmentofEarth...  相似文献   

6.
The development of bio-adsorbents with highly selective immobilization properties for specific heavy metals is a great challenge, but has important application value. Biogenic whewellite(BW) with high selectivity for Pb(Ⅱ) was synthesized by mineral microbial transformation. The selective immobilization properties and mechanism of BW for Pb(Ⅱ) were analyzed by combining mineral characterization technology and batch adsorption research methods. The results indicated that BW can efficiently and se...  相似文献   

7.
This paper deals with the soil-environmental standard. According to the current situation of researching on the soil-environmental quality guideline at home and abroad, and on the basis of the foundations and principles of enacting the soil-environmental standard, the soil environment quality guideline values of Hg, Cd, Pb and As were suggested.  相似文献   

8.
The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy(FTIR), Solid carbon nuclear magnetic resonance spectroscopy(CNMR)), silicon-29 nuclear magnetic resonance spectroscopy(Si NMR)), and X-ray diffraction spectroscope((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy(FTIR)),scanning electron microscopy(SEM)), and X-ray photoelectron spectroscopy((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II)followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430 mg/g. Thus, the waste linear low-density polyethylene-g-poly(acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.  相似文献   

9.
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.  相似文献   

10.
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.  相似文献   

11.
The discharge of heavy metal ions such as Cu~2+and Pb~2+poses a severe threat to public health and the environment owing to their extreme toxicity and bioaccumulation through food chains Herein, we report a novel organic–inorganic hybrid adsorbent, Al(OH)_3-poly(acrylamide dimethyldiallylammonium chloride)-graft-dithiocarbamate(APD), for rapid and effectiv removal of Cu~2+and Pb~2+. In this adsorbent, the "star-like" structure of Al(OH)3 poly(acrylamide-dimethyldiallylammonium chloride) served as the support of dithiocarbamat(DTC) functional groups for easy access of heavy metal ions and assisted development of larg and compact floccules. The synthesized adsorbent was characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). APD was demonstrated to hav rapid adsorption kinetics with an initial rate of 267.379 and 2569.373 mg/(g·min) as well a superior adsorption capacities of 317.777 and 586.699 mg/g for Cu~2+and Pb~2+respectively. Th adsorption process was spontaneous and endothermic, involving intraparticle diffusion and chemical interaction between heavy metal ions and the functional groups of APD. To assess it versatility and wide applicability, APD was also used in turbid heavy metal wastewater, and performed well in removing suspended particles and heavy metal ions simultaneously through flocculation and chelation. The rapid, convenient and effective adsorption of Cu~2+and Pb~2+give APD great potential for heavy metal decontamination in industrial applications.  相似文献   

12.
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com...  相似文献   

13.
Chemical oxidation was applied to an artificially contaminated soil with naphthalene (NAP). Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. Evaluation of NAP distribution and mass reduction in soil, water and air phases was carried out through mass balance. The importance of the air phase analysis was emphasized by demonstrating how NAP behaves in a sealed system over a 4 hr reaction period. Design of Experiments method was applied to the following variables: sodium persulfate concentration [SP], ferrous sulfate concentration [FeSO4], and pH. The system operated with a prefixed solid to liquid ratio of 1:2. The following conditions resulted in optimum NAP removal [SP] = 18.37 g/L, [FeSO4] = 4.25 g/L and pH = 3.00. At the end of the 4 hr reaction, 62% of NAP was degraded. In the soil phase, the chemical oxidation reduced the NAP concentration thus achieving levels which comply with Brazilian and USA environmental legislations. Besides the NAP partitioning view, the monitoring of each phase allowed the variabilities assessment over the process, refining the knowledge of mass reduction. Based on NAP distribution in the system, this study demonstrates the importance of evaluating the presence of semi-volatile and volatile organic compounds in the air phase during remediation, so that there is greater control of the system as to the distribution and presence of the contaminant in the environment. The results highlight the importance of treating the contaminant in all its phases at the contaminated site.  相似文献   

14.
Multiwall carbon nanotubes(MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(Ⅱ)binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared(FT-IR), Brunauer, Emmett and Teller(BET), Field Emission Scanning Electron Microscopy(FESEM) analysis, and the adsorption of Pb(Ⅱ) was studied as a function of p H,initial Pb(Ⅱ) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmaxwas calculated to be 104.2 mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ΔH0, ΔS0and ΔG0were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal(99.9%) of Pb(Ⅱ) are at p H 5, MWCNT dosage 0.1 g, agitation speed 160 r/min and time of 22.5 min with the initial concentration of 10 mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(Ⅱ) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.  相似文献   

15.
Nowadays, iron ions as a ubiquitous heavy metal pollutant are gradually concerned and the convenient and quick removal of excessive iron ions in groundwater has become a major challenge for the safety of drinking water. In this study, boron-doped biochar (B-BC) was successfully prepared at various preparation conditions with the addition of boric acid. The as-prepared material has a more developed pore structure and a larger specific surface area (up to 897.97 m²/g). A series of characterization results shows that boric acid effectively activates biochar, and boron atoms are successfully doped on biochar. Compared with the ratio of raw materials, the pyrolysis temperature has a greater influence on the amount of boron doping. Based on Langmuir model, the maximum adsorption capacity of 800B-BC1:2 at 25 °C, 40 °C, 55 °C are 50.02 mg/g, 95.09 mg/g, 132.78 mg/g, respectively. Pseudo-second-order kinetic model can better describe the adsorption process, the adsorption process is mainly chemical adsorption. Chemical complexation, ions exchange, and co-precipitation may be the main mechanisms for Fe2+ removal.  相似文献   

16.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron(Fe(Ⅲ)), manganese(Mn(Ⅱ)) and copper(Cu(Ⅱ)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2+–Fe3+combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atp D mutant(with defective FoF1-ATPase) MS116. Addition of Mn2+–Fe3+combinations within the same concentration range had no effects on growth compared to control(without heavy metals). ATPase activity was increased in the presence of Mn2+–Fe3+, while together with0.2 mmol/L N,N′-dicyclohexylcarbodiimide(DCCD), ATPase activity was decreased compared to control(when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential.The effects observed when Fe3+was added separately disappeared in both cases, which might be a result of competing processes between Fe3+and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria,and could be applied for regulation of stress response patterns in the environment.  相似文献   

17.
The study examined the adsorption of Pb(Ⅱ) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads.Several important parameters influencing the adsorption of Pb(Ⅱ) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(Ⅱ) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However,the adsorption capacity of Pb(Ⅱ) ions were reduced in the binary metal system due to the competitive adsorption between Pb(Ⅱ) and Cu(Ⅱ) ions. Based on the ion exchange study, the release of Ca~(2+), Mg~(2+), K~+ and Na~+ ions played an important role in the adsorption of Pb(Ⅱ) ions by all three adsorbents but only at lower concentrations of Pb(Ⅱ) ions. Infrared spectra showed that the binding between Pb(Ⅱ) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(Ⅱ) ions from aqueous solutions.  相似文献   

18.
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for ch...  相似文献   

19.
The effects of interaction between Bacillus subtilis DBM and soil minerals on Cu(Ⅱ)and Pb(Ⅱ)adsorption were investigated.After combination with DBM,the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of kaolinite and goethite improved compared with the application of the minerals independently.The modeling results of potentiometric titration data proved that the site concentrations of kaolinite and goethite increased by 80%and 30%,respectively after combination with DBM.However,the involvement of functional groups in the DBM/mineral combinations resulted in lower concentrations of observed sites than the theoretical values and led to the enhancement of desorption rates by NH_4NO_3 and EDTA-Na_2.The DBM-mineral complexes might also help to prevent heavy metals from entering DBM cells to improve the survivability of DBM in heavy metal-contaminated environments.During the combination process,the extracellular proteins of DBM provided more binding sites for the minerals to absorb Cu(Ⅱ)and Pb(Ⅱ).In particular,an especially stable complexation site was formed between goethite and phosphodiester bonds from EPS to enhance the Pb(Ⅱ)adsorption capacity.So,we can conclude that the DBM–mineral complexes could improve the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of minerals and protect DBM in heavy metal-contaminated environments.  相似文献   

20.
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号