首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Changing the concepts of economic development and introducing new amendments can hardly decrease the accumulation in the soil of such pollutants as metals, remaining there for a long time. The predictive models for describing the balance of metals in the soil, which are based on the ‘atmosphere–plant–soil’ system and reflect the complicated physical–chemical nature of the metals’ migration, expressed by coefficients obtained in long-term observations in natural conditions, allow for evaluating long-term concentration of metals in the soil. The model BALANS evaluates self-purification of soil, taking into account the uptake of metals of aerogenic origin by the soil together with amendments, their physical–chemical migration and the type of microrelief determining its intensity as well as the absorbed biomass of plants and the removal of metals with crops. In this model, the half-period of metals’ washing out from the soil, found for the microrelief characteristic of low places, exceeds 200 years for Ni, Cr and Pb and makes 90 and 150 years for Zn and Cu, respectively.  相似文献   

2.
We studied the profiles, possible sources, and transport of polycyclic aromatic hydrocarbons (PAHs) in soils from the Longtang area, which is an electronic waste (e-waste) recycling center in south China. The sum of 16 PAH concentrations ranged from 25 to 4,300 ng/g (dry weight basis) in the following order: pond sediment sites (77 ng/g), vegetable fields (129 ng/g), paddy fields (180 ng/g), wastelands (258 ng/g), dismantling sites (678 ng/g), and former open burning sites (2,340 ng/g). Naphthalene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[b]fluoranthene were the dominant PAHs and accounted for approximately 75 % of the total PAHs. The similar composition characteristics of PAHs and the significant correlations among individual, low molecular weight, high molecular weight, and total PAHs were found in all six sampling site types, thus indicating that PAHs originated from similar sources. The results of both isomeric ratios and principal component analyses confirmed that PAHs were mainly derived from the incomplete combustion of e-waste. The former open burning sites and dismantling sites were the main sources of PAHs. Soil samples that were taken closer to the point sources had high PAH concentrations. PAHs are transported via different soil profiles, including those in agricultural fields, and have been detected not only in 0- to 40-cm-deep soil but also in 40 cm to 80 cm-deep soil. PAH concentrations in soils in Longtang have been strongly affected by primitive e-waste recycling, particularly by former open burning activities.  相似文献   

3.
Wind erosion is a primary cause of desertification as well as being a serious ecological problem in arid and semi-arid areas across the world. To determine mechanisms for restoring desertified lands, an unrestored shifting sand dune and three formerly shifting sand dunes (desertified lands) that had been enclosed and afforested for 5, 15, and 25 years were selected for evaluation on the south edge of the Tengger Desert, China. Based on sampling heights between 0.2 and 3 m, the critical threshold average wind speed was 6.5 m s?1 at 2 m where the sand transport rate was reduced from 285.9 kg m?2 h?1 on the unrestored dunes to 9.1 and 1.8 kg m?2 h?1 on the sites afforested and enclosed for 5 and 15 years, respectively. The percentage of wind eroded area was reduced from 99.9% on the unrestored dune to 94.5, 9.0, and 0.5% on the sites afforested and enclosed for 5, 15, and 25 years, respectively. Wind erosion was effectively reduced after 15 years. Although there were different driving factors for wind erosion mitigation on the different restoration stages, an increase in the vegetation cover, surface roughness, soil shear strength, soil clay content, organic matter, and reduction in the near-surface wind speed were the primary variables associated with the restoration chronosequence. We conclude that reducing the wind speed and developing a biological crust through vegetation restoration were the critical components for restoration of desertified land.  相似文献   

4.
Members of the public in England were invited in 2010 to take part in a national metals survey, by collecting samples of littoral sediment from a standing water body for geochemical analysis. To our knowledge, this is the first national sediment metals survey using public participation and reveals a snapshot of the extent of metals contamination in ponds and lakes across England. Hg, Ni, Cu, Zn and Pb concentrations exceeding sediment quality guidelines for the health of aquatic biota are ubiquitous in ponds and lakes, not just in areas with a legacy of industrial activity. To validate the public sampling approach, a calibration exercise was conducted at ten water bodies selected to represent a range of lakes found across England. Sediment concentrations of Hg, Ni, Cu, Zn and Pb were measured in samples of soil, stream and littoral and deep water sediment to assess inputs. Significant differences between littoral sediment metal concentrations occur due to local variability, but also organic content, especially in upland, peat soil catchments. Variability of metal concentrations between littoral samples is shown to be low in small (<20 ha) lowland lakes. Larger and upland lakes with more complex inputs and variation in organic content of littoral samples have a greater variability. Collection of littoral sediments in small lakes and ponds, with or without voluntary participation, can provide a reliable sampling technique for the preliminary assessment of metal contamination in standing waters. However, the heterogeneity of geology, soils and history/extent of metal contamination in the English landscape, combined with the random nature of sample collection, shows that systematic sampling for evaluating the full extent of metal contamination in lakes is still required.  相似文献   

5.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   

6.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

7.
A long history of urbanization and industrialization has affected trace elements in New York City (NYC) soils. Selected NYC pedons were analyzed by aqua regia microwave digestion and sequential chemical extraction as follows: water soluble (WS); exchangeable (EX); specifically sorbed/carbonate bound (SS/CAR); oxide-bound (OX); organic/sulfide bound (OM/S). Soils showed a range in properties (e.g., pH 3.9 to 7.4). Sum of total extractable (SUMTE) trace elements was higher in NYC parks compared to Bronx River watershed sites. NYC surface horizons showed higher total extractable (TE) levels compared to US non-anthropogenic soils. TE levels increased over 10 year in some of the relatively undisturbed and mostly wooded park sites. Surface horizons of park sites with long-term anthropogenic inputs showed elevated TE levels vs. subsurface horizons. Conversely, some Bronx River watershed soils showed increased concentrations with depth, reflective of their formation in a thick mantle of construction debris increasing with depth and intermingled with anthrotransported soil materials. Short-range variability was evident in primary pedons and satellite samples (e.g., Pb 253?±?143 mg/kg). Long-range variability was indicated by PbTE (348 versus 156 mg/kg) and HgTE (1 versus 0.3 mg/kg) concentrations varying several-fold in the same soil but in different geographic locations. Relative predominance of fractions: RES (37 %)?>?SS/CAR (22 %)?>?OX (20 %)?>?OM/S (10 %)?>?EX (7 %)?>?WS (4 %). WS and EX fractions were greatest for Hg (7 %) and Cd (14 %), respectively. RES was predominant fraction for Co, Cr, Ni, and Zn (41 to 51 %); SS/CAR for Cd and Pb (40 and 63 %); OM/S for Cu and Hg (36 and 37 %); and OX for As (59 %).  相似文献   

8.
The first objective of this study was to provide data of arsenic (As) levels in Peninsular Malaysia based on soil samples and accumulation of As in Centella asiatica collected from 12 sampling sites in Peninsular Malaysia. The second objective was to assess the accumulation of As in transplanted C. asiatica between control and semi-polluted or polluted sites. Four sites were selected which were UPM (clean site), Balakong (semi-polluted site), Seri Kembangan (semi-polluted site) and Juru (polluted site). The As concentrations of plant and soil samples were determined by Instrumental Neutron Activation Analysis. The As levels ranged from 9.38 to 57.05 μg/g dw in soils, 0.21 to 4.33 μg/g dw in leaves, 0.18 to 1.83 μg/g dw in stems and 1.32–20.76 μg/g dw in roots. All sampling sites had As levels exceeding the CCME guideline (12 μg/g dw) except for Kelantan, P. Pauh, and Senawang with P. Klang having the highest As in soil (57.05 μg/g dw). In C. asiatica, As accumulation was highest in roots followed by leaves and stems. When the As level in soils were higher, the uptake of As in plants would also be increased. After the transplantation of plants to semi-polluted and polluted sites for 3 weeks, all concentration factors were greater than 50 % of the initial As level. The elimination factor was around 39 % when the plants were transplanted back to the clean sites for 3 weeks. The findings of the present study indicated that the leaves, stems and roots of C. asiatica are ideal biomonitors of As contamination. The present data results the most comprehensive data obtained on As levels in Malaysia.  相似文献   

9.
The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0–20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg?1, respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0–20- and 20–40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0–20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by ‘natural’ factors and As originated from natural sources, deposition and irrigation water.  相似文献   

10.
This paper reports the first results of geochemical survey carried out in and around Siddipet, taking soil (topsoil 0–25 cm and subsoil 70–95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the geochemical patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.  相似文献   

11.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

12.
Surface soil (0–20 cm) samples (n?=?143) were collected from vegetable, maize, and paddy farmland used for commercial crops in Liaoning, China. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) listed in US Environmental Protection Agency were analyzed by high-performance liquid chromatography using a fluorescence detector. The soil concentrations of the 16 PAH ranged from 50 to 3,309 ng/g with a mean of 388 ng/g. The highest concentration of total PAHs found in soil of the vegetable farmland was 448 ng/g in average, followed by maize and paddy with total PAHs of 391 and 331 ng/g, respectively. Generally, the low molecular weight PAHs were more predominant than the high molecular weight PAHs in most of the soils. The evaluation of soil PAH contamination based on the Canadian criterion indicated that only naphthalene, phenanthrene, and pyrene were over the target values in several sampling sites. Isomer pair ratios and principal component analysis indicated that biomass and coal combustion were the main sources of PAHs in this area. And the average value of total B[a]Peq concentration in vegetable soils was higher than paddy and maize soils. We suggest that biomass burning should be abolished and commercial farming should be carried out far from the highways to ensure the safety of food products derived from commercial farming.  相似文献   

13.
In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01–1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04–0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0–15 cm (average concentration, 0.63 mg/g), >40–55 cm (average concentration, 0.36 mg/g), >100–115 cm (average concentration, 0.29 mg/g), and >500–515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.  相似文献   

14.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

15.
The concentration and impact of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)-ethane (DDT) and its metabolites (DDE: 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene) on the environment was expected to decrease after its ban in the mid-1980s. Unfortunately, DDT contamination via its presence as an impurity in dicofol (2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol) has led to a new source of contamination. This is particularly true especially in cotton production in Söke Plain, Turkey, where difocol-based pesticides are being used. The aim of this research was to investigate the extent and source of DDT contamination in cotton soils. Söke Plain soil samples were collected from 0–30, 30–60, and 60–90-cm depth and analyzed by GC/MS/MS. o,p′-DDT and p, p′-DDE were detected at 16.2 % and 17.6 % of the sites in the 0–30-cm depth of soils. In the 30–60 cm, p, p′-DDT (14.9 %), o, p′-DDE (8.1 %) and p, p′-DDE (2.7 %) were found in soil samples, and p, p′-DDT was the most prevalent with 9.5 % of the sampling sites. The dominant source of DDT particularly in the 60–90-cm depth was due to historic use of DDT. The presence of p, p′-DDE, o, p′-DDE and p,p′-DDT in the topsoil was attributed to recent dicofol applications.  相似文献   

16.
Fractionation of soil phosphorus (P) can provide useful information for assessing the risk of soil P as the potential sources of eutrophication in aquatic systems. Little information exists on P forms in paddy soils of Isfahan Province in central Iran, where P fertilizers have been continuously applied for at least 45 years. The objectives of this study were to investigate concentrations and proportions of P forms in paddy soils and correlate the content of P forms with basic soil properties. Soil samples from three paddy sites were obtained, and soil P forms were determined by a modified Hedley fraction method. Results show that the total P concentrations ranged from 288 to 850 mg kg?1 and were enriched in site 1. In all sites, the rank order of P fractions was HCl-P (CARB-P)?>?residual-P (RES-P)?>?NaOH-P (Fe-Al-P)?>?KCl-P (EXCH-P), indicating that Ca compounds are the main soil components contributing to P retention in these calcareous paddy soils. The EXCH-P represented on average?<?1 % of the total P, while the Fe-Al-P ranged 3.3–18 %. The CARB-P showed considerable contribution (63.6–85.6 %) to the total P. The Pearson correlation matrix indicated that Fe-Al-P only was positively correlated with total P, but did not show any significant correlations with other soil geochemical properties. Calcium-bound P fraction was significantly correlated with the clay, silt, cation exchange capacity, and total P.  相似文献   

17.
Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p?<?0.01), available P (p?<?0.01), cation exchange capacity (p?<?0.05), and organic carbon (p?<?0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p?<?0.01), pH, and clay content (p?<?0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.  相似文献   

18.
The pollutants that are discharged from roads and traffic have attracted much attention recently. Nonetheless, most studies have mainly focused on highways and seldom on railways. In this study, soil samples were selected at the embankment and perpendicularly at different distances (2, 5, 10, 20, 30, 50, 60, 70, 80, 100, and 150 m) from the embankment bottom of the QinghaiTibet railway. Furthermore, soils were selected at four soil depths (5, 10, 20, and 30 cm) of each sample at the flat. The enrichment of nine heavy metals (V, Cr, Co, Ni, Cu, Zn, Rb, Cd, and Pb) in soils along the DelhiUlan section of the QinghaiTibet railway was studied. The results indicated that the mean concentrations of Cr, Ni, Cu, Zn, Pb, and Cd were highest at the embankment. The Cu concentrations in soils decreased by an S-curve-shaped function with increasing distance from the embankment, while Cd, Pb, and Zn decreased by inverse functions (p?<?0.0001). The concentrations of other studied metal did not show significant changes with increasing distance. After performing a statistical analysis, Pb, Cd, and Zn in soils were considered to be influenced by railway operations. However, the influence was weak and only spanned less than 5 m from the bottom of the embankment horizontally and 10 cm from the surface vertically. The mean concentrations of heavy metals in soils along the DelhiUlan section of the QinghaiTibet railway were considered lower compared with those along other railways.  相似文献   

19.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

20.
A method based on headspace (HS) sampling coupling with portable gas chromatography (GC) with photo ionization detector (PID) was developed for rapid determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in soils. Optimal conditions for HS gas sampling procedure were determined, and the influence of soil organic matter on the recovery of BTEX from soil was investigated using five representative Chinese soils. The results showed that the HS-portable-GC-PID method could be effectively operated at ambient temperature, and the addition of 15 ml of saturated NaCl solution in a 40-ml sampling vial and 60 s of shaking time for sample solution were optimum for the HS gas sampling procedure. The recoveries of each BTEX in soils ranged from 87.2 to 105.1 %, with relative standard deviations varying from 5.3 to 7.8 %. Good linearity was obtained for all BTEX compounds, and the detection limits were in the 0.1 to 0.8 μg kg?1 range. Soil organic matter was identified as one of the principal elements that affect the HS gas sampling of BTEX in soils. The HS-portable-GC-PID method was successfully applied for field determination of benzene and toluene in soils of a former chemical plant in Jilin City, northeast China. Considering its satisfactory repeatability and reproducibility and particular suitability to be operated in ambient environment, HS sampling coupling with portable GC-PID is, therefore, recommended to be a suitable screening tool for rapid on-site determination of BTEX in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号