首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater development across much of sub-Saharan Africa is constrained by a lack of knowledge on the suitability of aquifers for borehole construction. The main objective of this study was to map groundwater potential at the country-scale for Ghana to identify locations for developing new supplies that could be used for a range of purposes. Groundwater potential zones were delineated using remote sensing and geographical information system (GIS) techniques drawing from a database that includes climate, geology, and satellite data. Subjective scores and weights were assigned to each of seven key spatial data layers and integrated to identify groundwater potential according to five categories ranging from very good to very poor derived from the total percentage score. From this analysis, areas of very good groundwater potential are estimated to cover 689,680 ha (2.9 % of the country), good potential 5,158,955 ha (21.6 %), moderate potential 10,898,140 ha (45.6 %), and poor/very poor potential 7,167,713 ha (30 %). The results were independently tested against borehole yield data (2,650 measurements) which conformed to the anticipated trend between groundwater potential and borehole yield. The satisfactory delineation of groundwater potential zones through spatial modeling suggests that groundwater development should first focus on areas of the highest potential. This study demonstrates the importance of remote sensing and GIS techniques in mapping groundwater potential at the country-scale and suggests that similar methods could be applied across other African countries and regions.  相似文献   

2.
The ecological water conveyance project (EWCP) in the lower reaches of the Tarim River provided a valuable opportunity to study hydro-ecological processes of desert riparian vegetation. Ecological effects of the EWCP were assessed at large spatial and temporal scales based on 13 years of monitoring data. This study analyzed the trends in hydrological processes and the ecological effects of the EWCP. The EWCP resulted in increased groundwater storage—expressed as a general rise in the groundwater table—and improved soil moisture conditions. The change of water conditions also directly affected vegetative cover and the phenology of herbs, trees, and shrubs. Vegetative cover of herbs was most closely correlated to groundwater depth at the last year-end (R?=?0.81), and trees and shrubs were most closely correlated to annual average groundwater depth (R?=?0.79 and 0.66, respectively). The Normalized Difference Vegetation Index (NDVI) responded to groundwater depth on a 1-year time lag. Although the EWCP improved the NDVI, the study area is still sparsely vegetated. The main limitation of the EWCP is that it can only preserve the survival of existing vegetation, but it does not effectively promote the reproduction and regeneration of natural vegetation.  相似文献   

3.
Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km2 to 46,049.23 km2 during 1975?C2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region.  相似文献   

4.
With the recession of the Aral Sea in Central Asia, once the world’s fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000–2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4–8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.  相似文献   

5.
This study was carried out to investigate possible seawater intrusion into groundwater along the coastal lines of the Bafra Plain and salinity–alkalinity problems over land areas irrigated with water exposed to seawater intrusion were evaluated. For this purpose, 32 groundwater wells were selected over the plain, water samples were taken from these wells between October 2007 and September 2008, and chemical analyses were performed over these samples. Soil samples were taken from the fields irrigated with this water at 32 different locations at the end of the irrigation season in September 2008 from 0–30, 30–60, 60–90, and 90–120 cm soil depths and textures. EC, pH, Na, Ca, Mg, and K analyses were performed over these samples. Excessive seawater intrusion was observed in some parts of the plain and impacts of seawater intrusion decreased with the distance from the coastal line. It was determined that groundwater quality was significantly affected from seawater intrusion. Salinity and especially alkalinity problems were observed in land areas irrigated with this water and alkalinity increased with the rate of intrusion.  相似文献   

6.
In this study, land use change and its effects on level and volume of groundwater were investigated. Using satellite images and field measurements, change in land uses was determined from 1998 to 2007. By analyzing the observation wells data and preparing the zoning maps in GIS, groundwater level fluctuations were assessed. Considering the area corresponding to these fluctuations, changes in aquifers volume were calculated. The rain gauge and synoptic stations data were used to calculate meteorological parameters and evapotranspiration. The water requirement of the main crops was determined by CROPWAT software. Results showed an increase in average rainfall and crops water requirement. The classification of satellite images showed that 11,800 ha was increased in lands under irrigated crops cultivation, while 27,655 ha of rangeland was declined in the region. Groundwater levels dropped an average of 7 m, equal to 63.4 MCM reductions in volume of water in the aquifer.  相似文献   

7.
The maintenance of limnological monitoring programs in the Cerrado Domain is crucial as a provision of useful information about temporal variations in land use and their respective water quality responses, considering its importance as water source for different Brazilian hydrographic basins. The purpose of this research was to describe limnological variables of low-order lotic systems located in the Cerrado Long Term Ecological Research (LTER) site (Environmental Protection Area (APA) Gama and Cabeça de Veado, Federal District of Brazil). Altogether, nine different streams were considered in this study. Samplings were conducted between 2010 and 2012, concentrated in the dry and rainy seasons. The sampling sites were generally characterized by low nutrient concentrations (e.g., medians, TP?=?14.8 μg L?1, TN?=?20.0 μg L?1, NO3?=?13.8 μg L?1) and slightly acidic waters (median, pH?=?5.3), with quite low electrical conductivity values (median?=?6.4 μS cm?1). However, water quality degradation as a response to diffuse pollution was reported in some sampling points (e.g., Onça and Gama streams), expressed by relatively higher N and P concentrations, which were probably highlighted by the good water quality of the data set as whole. Although there was a trend to higher values of nitrogen forms during the dry season, significant statistical differences between the seasonal periods were reported only for the variables temperature and dissolved silica, which were higher in the dry and rainy season, respectively. The streams located in the preserved areas inside the ecological stations of APA Gama and Cabeça de Veado can still be considered good examples of reference lotic systems in the Cerrado Domain; notwithstanding, this study reported incipient signs of water quality degradation which cannot be overlooked in future limnological monitoring.  相似文献   

8.
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa?=?0.88) for 1990 and 85 % (kappa?=?0.81) for 2009. It was found that the city has expanded over 42.75 km2 within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5?±?2.6 °C increase in land surface temperature, vegetation to fallow 6.7?±?3 °C, fallow to built-up is 3.5?±?2.9 °C and built-up to dense built-up is 5.3?±?2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N–S and NE–SW profiles.  相似文献   

9.
The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the forest conservation areas (ecosystem zoning) all in consultation with government (political class), community and other stakeholders. Groups are organised (environmental management committee) to address conservation, political and vulnerability issues in the pastoral dry forested ecosystem which will sustain pastoralism in the ecosystem.  相似文献   

10.
The study presents a new methodology to quantify spatiotemporal dynamics of climate change vulnerability at a regional scale adopting a new conceptual model of vulnerability as a function of climate change impacts, ecological stability, and socioeconomic stability. Spatiotemporal trends of equally weighted proxy variables for the three vulnerability components were generated to develop a composite climate change vulnerability index (CCVI) for a Mediterranean region of Turkey combining Landsat time series data, digital elevation model (DEM)-derived data, ordinary kriging, and geographical information system. Climate change impact was based on spatiotemporal trends of August land surface temperature (LST) between 1987 and 2016. Ecological stability was based on DEM, slope, aspect, and spatiotemporal trends of normalized difference vegetation index (NDVI), while socioeconomic stability was quantified as a function of spatiotemporal trends of land cover, population density, per capita gross domestic product, and illiteracy. The zones ranked on the five classes of no-to-extreme vulnerability were identified where highly and moderately vulnerable lands covered 0.02% (12 km2) and 11.8% (6374 km2) of the study region, respectively, mostly occurring in the interior central part. The adoption of this composite CCVI approach is expected to lead to spatiotemporally dynamic policy recommendations towards sustainability and tailor preventive and mitigative measures to locally specific characteristics of coupled ecological–socioeconomic systems.  相似文献   

11.
At present, dynamic land use, climate change, and growing needs for fresh water are increasing the demand on the ecosystem effects of forest vegetation. Mountainous areas are at the forefront of scientific interest in European forest ecology and forest hydrology. Although uplands cover a significant area of the Czech Republic and other countries and are often covered with forest formations, they do not receive an appropriate amount of attention. Therefore, two experimental upland head micro-watersheds in the Bohemian Massif were selected for study because they display similar natural conditions, but different vegetative conditions (forest versus meadow). During the 2011 growing season, short-term streamflow measurements were carried out at the discharge profiles of both catchments and were evaluated in relation to climatic data (rainfall and temperature). The basic premise was that the streamflow in a forested catchment must exhibit different temporal dynamics compared to that in treeless areas and that these differences can be attributed to the effects of woody vegetation. These conclusions were drawn from measurements performed during dry periods lasting several days. A decreasing streamflow trend during the day part of the day (0900–1900 hours) was observed in both localities. The decrease reached approx. 44 % of the initial morning streamflow (0.24 dm3 s?1 day?1) in the treeless catchment and approx. 20 % (0.19 dm3 s?1 day?1) in the forested catchment. At night (1900–0900 hours), the streamflow in the forested catchment increased back to its initial level, whereas the streamflow in the treeless catchment stagnated or slowly decreased. We attribute these differences to the ecosystem effects of woody vegetation and its capacity to control water loss during the day. This type of vegetation can also function as a water source for the hydrographic network during the night.  相似文献   

12.
The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012–2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n?=?138), River Kangsabati (n?=?13) and groundwater (n?=?12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always <0.2 indicating greater exposure to antibiotics and subsequent resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon?>?winter?>?summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.  相似文献   

13.
Perchlorate contamination was investigated in groundwater and surface water from Sivakasi and Madurai in the Tamil Nadu State of South India. Sensitive determination of perchlorate (LOQ?=?0.005 μg/L) was achieved by large-volume (500 μL) injection ion chromatography coupled with tandem mass spectrometry. Concentrations of perchlorate were <0.005–7,690 μg/L in groundwater (n?=?60), <0.005–30.2 μg/L in surface water (n?=?11), and 0.063–0.393 μg/L in tap water (n?=?3). Levels in groundwater were significantly higher in the fireworks factory area than in the other locations, indicating that the fireworks and safety match industries are principal sources of perchlorate pollution. This is the first study that reports the contamination status of perchlorate in this area and reveals firework manufacture to be the pollution source. Since perchlorate levels in 17 out of 57 groundwater samples from Sivakasi, and none from Madurai, exceeded the drinking water guideline level proposed by USEPA (15 μg/L), further investigation on human health is warranted.  相似文献   

14.
Groundwater quality of Enugu metropolis comprising Achara Layout, Abakpa, and Emene settlement areas has been studied and characterized using multivariate statistical techniques. Three principal components (PCs) which explain 77.93 and 88.17 % were extracted at Achara Layout and Abakpa, respectively, while two PCs which explain 83.13 % were extracted at Emene. PC 1 of all the three areas reflects weathering of the host rock minerals and constitutes the dominant controlling process for all the areas. PC 2 of the three areas and PC 3 of Achara Layout and Abakpa can be attributed to both weathering/leaching of feldspathic minerals of host rocks (giving rise to alkaline earth metals in the groundwater) and anthropogenic activities. Cluster analysis defined groups of groundwater samples with similar hydrochemical characteristics. Two groups in Achara Layout and Emene fell into the high pollution loading class, while only one group in Abakpa fell into this class. The variation in the groundwater quality within each of the three areas may be explained in terms of groundwater flow directions, land use, and well depths. Discriminant analysis showed that the discriminating parameters of the groundwater quality of Achara Layout, Abakpa, and Emene are total dissolved solids, Na and Mg, and Cl, respectively. This study has revealed that the groundwater quality of the areas is controlled by both geogenic and anthropogenic processes and activities. The generated groundwater quality spatial variation models for each area will serve as a tool in the planning and development of groundwater in that region.  相似文献   

15.
Semi-arid regions across the globe are fronting water crises, signaling a challenge to ensure future water security. Given the high inter-seasonal rainfall variability and unrestrained groundwater extraction, the precise quantification of groundwater flow components in an aquifer system is a priority. To address this challenge, we used high-resolution remote sensing (RS) data (Landsat and IRS) and GIS modeling (SEBAL, ArcCN) to spatially quantify major groundwater balance (GWB) components, viz., evapotranspiration (ET), rainfall recharge (R), surface runoff (Q), groundwater extraction (PG), irrigation return flow (IRF), and ultimately changes in groundwater storage (ΔS) in a small semi-arid crystalline representative watershed. Results show that a total of ~?230 mm of groundwater is extracted during 2008–2009, creating a negative impact on the groundwater resource, which is further enhanced by limited recharge and high ET. A decrease of approximately 65 mm in groundwater storage is observed in a single hydrological year, and given a very low specific yield, this decrease will introduce large water level decline. The study establishes that declining groundwater level in the watershed is a direct result of over-extraction, and owing to this scenario, efficient irrigation and land use policies are suggested as potential approaches to minimize extraction specifically in the dry season. Our methodology provides a systematic assessment of vital GWB components at a high spatial resolution and an insight on various sustainable mitigation methods. This methodology is useful in the planning and management of groundwater resources, particularly in water-stressed areas.  相似文献   

16.
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4–12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11–0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (K S ?=?5.25?×?10?4 cm/s). The soil containing 47 % silt, 11 % clay, and 1.54 % organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R 2?=?0.977, RMSE?=?1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42–49 %. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion point was reached within 12 days of elapsed time. This clearly demonstrated poor attenuation capacity of the soil to retard migration of phenol to the groundwater from the surface outfall site. Suitable liner, based on these data, may be designed to inhibit subsurface transport of phenol and thereby to protect precious groundwater from contamination.  相似文献   

17.
In this semi-arid area, many studies focused on the two-phase vegetation pattern were carried out to explore a changing vegetation trajectory on degraded land. However, this study conducted an analysis of a two-phase vegetation pattern and explored the successional vegetation trajectories in a positive succession without disturbance. In this work, 60 randomly distributed plots (1?×?1 m) were invested on four abandoned land areas (4-, 12-, 22-, and 50-year abandoned land) to determine attributes of vegetation, and soil physical and nutritional properties. It was found that vegetation distribution development went from homogeneous on 4-year abandoned land to heterogeneous on 50-year abandoned land, with a positive succession. Meanwhile, there was a significant difference in soil physical and nutritional properties for the inside and outside of vegetation patches. Vegetation patches can supply better soil physical and nutritional properties for vegetation than bare patches along the abandoned time. Vegetation diversity changes without a regular trend which may be due to the effect of environment and interspecies competition. This work picked up the slack for vegetation patterns succession research and provided a quantitative analysis approach.  相似文献   

18.
This study aimed to analyze the impact of Zayandehrood Dam on desertification using the spatio-temporal dynamics of land use/land cover (LULC) and land surface temperature (LST) in an arid environment in central Iran from 1987 to 2014. The LULC and LST images were calculated from Landsat TM, ETM+, and OLI data, and their accuracies were assessed against reference data using error matrix and linear regression analysis. Results showed that salty and bare lands increased up to 57,302 ha, while agricultural lands declined substantially (28,275.58 ha) in the region. The changes in LULC classes resulted in dramatic variations in LST values. The average temperature showed a 5.03 °C increase, and the minimum temperature increased by 5.66 °C. LST had an increasing trend in bare lands (8.74 °C), poor rangelands (6.8 °C), agricultural lands (9.46 °C), salty lands (9.6 °C), and residential areas (3.18 °C) in this 27-year period. Rainfall and temperature trend analysis revealed that the main cause of these extreme changes in LULC and LST was largely attributed to the drying up of Zayandehrood River due to dam construction and allocating water mainly for industrial sectors. Results indicate that in addition to LULC changes, the spatio-temporal variations of LST can be used as an effective index in desertification assessment and monitoring in arid environments.  相似文献   

19.
Climate change has impacts on both natural and human systems. Accurate information regarding variations in precipitation and temperature is essential for identifying and understanding these potential impacts. This research applied Mann–Kendall, rescaled range analysis and wave transform methods to analyze the trends and periodic properties of global and regional surface air temperature (SAT) and precipitation (PR) over the period of 1948 to 2010. The results show that 65.34 % of the area studied exhibits significant warming trends (p?<?0.05) while only 3.18 % of the area exhibits significant cooling trends. The greatest warming trends are observed in Antarctica (0.32 °C per decade) and Middle Africa (0.21 °C per decade). Notably, 62.26 % of the area became wetter, while 22.01 % of the area shows drying trends. Northern Europe shows the largest precipitation increase, 12.49 mm per decade. Western Africa shows the fastest drying, ?21.05 mm per decade. The rescaled range analysis reveals large areas that show persistent warming trends; this behavior in SAT is more obvious than that in PR. Wave transform results show that a 1-year period of SAT variation dominates in all regions, while inconsistent 0.5-year bands are observed in East Asia, Middle Africa, and Southeast Asia. In PR, significant power in the wavelet power spectrum at a 1-year period was observed in 17 regions, i.e., in all regions studied except Western Europe, where precipitation is instead characterized by 0.5-year and 0.25-year periods. Overall, the variations in SAT and PR can be consistent with the combined impacts of natural and anthropogenic factors, such as atmospheric concentrations of greenhouse gases, the internal variability of climate system, and volcanic eruptions.  相似文献   

20.
Nitrates are the most common chemical pollutant of groundwater in agricultural and suburban areas. Croatia must comply with the Nitrate Directive (91/676/EEC) whose aim is to reduce water pollution by nitrates originating from agriculture and to prevent further pollution. Podravina and Prigorje are the areas with a relatively high degree of agricultural activity. Therefore, the aim of this study was, by monitoring nitrates, to determine the distribution of nitrates in two different areas, Podravina and Prigorje (Croatia), to determine sources of contamination as well as annual and seasonal trends. The nitrate concentrations were measured in 30 wells (N?=?382 samples) in Prigorje and in 19 wells (N?=?174 samples) in Podravina from 2002 to 2007. In Podravina, the nitrate content was 24.9 mg/l and 6 % of the samples were above the maximum available value (MAV), and in Prigorje the content was 53.9 mg/l and 38 % of the samples above MAV. The wells were classified as correct, occasionally incorrect and incorrect. In the group of occasionally incorrect and incorrect wells, the point sources were within 10 m of the well. There is no statistically significant difference over the years or seasons within the year, but the interaction between locations and years was significant. Nitrate concentrations’ trend was not significant during the monitoring. These results are a prerequisite for the adjustment of Croatian standards to those of the EU and will contribute to the implementation of the Nitrate Directive and the Directives on Environmental Protection in Croatia and the EU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号