首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   

2.
The presence of a high concentration of sodium in wastewater is considered inhibitory for anaerobic biological treatment. This research was designed to investigate the potential use of halophilic methanogens and a mixed culture of halophilic methanogens and digester sludge, in anaerobic filters, for treatment of organic pollutants in high-saline wastewater at 35 degrees C. Data related to startup of the filters are presented. Both halophilic and mixed-culture anaerobic filters were able to operate at a sodium chloride concentration of 35 g/L, at organic loading rates (OLRs) of 6.2 and 5 kg chemical oxygen demand (COD)/m(3) x d, respectively. The COD removal efficiency was as high as 80%, and the systems were able to maintain a low volatile fatty acids concentration of 500 mg/L. No significant difference in COD removal was observed between the halophilic filter and the mixed-culture filter. Increasing the salt concentration to 37 g/L at an OLR of 3 kg/m(3) x d caused system failure.  相似文献   

3.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

4.
The fixation of phosphorus (FIX-Phos) combines struvite prevention and phosphorus recovery by the addition of calciumsilicatehydrate (CSH) particles into the anaerobic digester. The CSH fixates phosphorus as calcium phosphate and reduces the phosphorus concentration in the sludge water that allows for control of struvite formation. The phosphorus-containing recovery product can be separated and recovered from the digested sludge. In pilot plant experiments, 21% to 31% of phosphorus contained in digested sludge could be recovered when CSH was added at concentrations of 2 g/L to 3.5 g/L to a mixture of primary sludge and waste activated sludge (WAS) from enhanced biological phosphorus removal. The recovery product contained few heavy metals and a phosphorus content of 18 wt % P2O5, which allows for recycling as fertilizer. The fixation of phosphorus within the digester may increase wastewater sludge dewaterability. The phosphorus recycle stream to the headworks of the wastewater treatment plant is reduced.  相似文献   

5.
This study explored the biodegradation potential of two agricultural pesticides (2,4-D and isoproturon) as well as their effect on the performance of the anaerobic digestion process. Three 3.5 L batch reactors were used, having the same initial isoproturon concentration (25 mg/L) and different 2,4-D concentrations (i.e. 0, 100, or 300 mg/L, respectively). All systems were fed with equal amounts of primary sludge and digested sludge and operated at the low mesophilic range (32 +/- 2 degrees C). Following an acclimation period of approximately 30 days, complete 2,4-D removal was achieved, whereas isoproturon biodegradation was practically negligible. The presence of 2,4-D did not have a direct effect on acidogenesis since soluble organic carbon [expressed either as volatile fatty acids (VFAs) or as total organic carbon (TOC)] peaked within the first 10 days of operation in all bioreactors. Utilization of VFAs however appeared to follow two distinct patterns: one pattern was represented by acetate and butyrate (i.e. no acid accumulation) while the other was followed by propionate, isobuturate, valerate and isovalerate (i.e. acid accumulation, duration of which was related to the initial 2,4-D concentration). On the whole, all reactors exhibited a successful digestion performance demonstrated by complete VFAs utilization, considerable gas production (containing 45 to 65% methane by volume), substantial volatile suspended solids (VSS) reduction (42 to 50%), as well as pH and alkalinity recovery.  相似文献   

6.
A new way of generating Class A sludge using microwaves was evaluated through a series of laboratory-scale experiments. Microwaves provide rapid and uniform heating throughout the material. Other benefits of microwave treatment include instant and accurate control and selective and concentrated heating on materials, such as sludge, that have a high dielectric loss factor. Sludge was irradiated with 2450-MHz microwaves, and fecal coliforms were counted. Fecal coliforms were not detected at 65 degrees C for primary sludge and anaerobic digester sludge and at 85 degrees C for waste activated sludge when sludge was irradiated with 2450-MHz microwaves. During the bench-scale anaerobic digester operation, the highest average log reduction of fecal coliforms was achieved by the anaerobic digester fed with microwave-pretreated sludge (> or = 2.66 log removal). The anaerobic digester fed with microwave-irradiated sludge was more efficient in inactivation of fecal coliforms than the other two digesters fed with raw sludge and externally heated sludge, respectively. It took more than three hydraulic retention times for a bench-scale mesophilic anaerobic digester to meet Class A sludge requirements after feeding microwave-irradiated sludge. Class A sludge can be produced consistently with a continuously fed mesophilic anaerobic digester if sludge is pretreated with microwaves to reach 65 degrees C.  相似文献   

7.
通过试验研究酸性媒介黄GG染料在厌氧、好氧条件下的生物降解机理、降解能力及共代谢降解效果。试验结果表明,厌氧菌能够通过葡萄糖共代谢作用很快降解酸性媒介黄GG;而好氧条件下经驯化活性污泥不能降解酸性媒介黄GG,经过较长时间驯化活性污泥能降解酸性媒介黄GG,但降解效果很差。葡萄糖浓度的升高对提高酸性媒介黄GG厌氧生物降解率有利,当葡萄糖浓度为2000mg/L时,40mg/L酸性媒介黄GC的12和60h厌氧生物降解率分别达到81.5%和93.5%。酸性媒介黄GG浓度对厌氧菌的生物降解能力也有影响。当葡萄糖浓度为2000mg/L,酸性媒介黄GG(浓度为20~100mg/L)的厌氧降解率最好,降解效率达到了94%,说明厌氧菌对酸性媒介黄GG的降解能力较好。  相似文献   

8.
This research focuses on the removal of 2, 4-D via denitrification, with a particular emphasis on the effect of adding naturally generated volatile fatty acids (VFAs) as a carbon source. These VFAs had been produced from an acid-phase anaerobic digester (mean VFA concentration of 3153 ± 801 mg/L [as acetic acid]). The first step involved developing 2, 4-D degrading bacteria in a sequencing batch reactor (SBR) fed with both sewage and 2, 4-D (30–100 mg/L). Subsequent denitrification batch tests demonstrated that the specific denitrification rate increased from 0.0119 ± 0.0039 to 0.0192 ± 0.0079 g NO3-N/g volatile suspended solids (VSS) per day, when using 2, 4-D alone versus 2, 4-D plus natural VFAs from the digester as a carbon source. Similarly, the specific 2, 4-D consumption rate increased from 0.0016 ± 0.0009 to 0.0055 ± 0.0021 g 2,4-D/g VSS per day, when using 2, 4-D alone as compared to using 2, 4-D plus natural VFAs. Finally, a parallel increase in the percent 2, 4-D removal was observed, rising from 28.33 ± 11.88 using 2, 4-D alone to 54.17 ± 21.89 using 2, 4-D plus natural VFAs.  相似文献   

9.
以木糖为碳源采用间歇培养方式,对木糖厌氧发酵产酸进行研究。考察木糖浓度和初始pH值对木糖厌氧产酸的影响。结果表明,随着木糖浓度的增加,总产酸量得到提高,但木糖利用率却呈现下降的趋势。当木糖浓度为5 g/L时,其利用率为100%,15 g/L时利用率为73.9%,此时挥发性脂肪酸(VFAs)为9.22 g/L。木糖的分批投加可有效促进产酸,尤其是促进乙酸浓度的提高。pH为5.0和6.0左右时,VFAs主要成分为乙酸和丁酸;而pH为7.0~9.0时,乙酸含量明显增高,在pH值为8.0的条件下乙酸含量占总VFAs的80.1%。在pH=8.0时经过8 d左右的发酵,VFAs浓度可达9.34 g/L。  相似文献   

10.
The anaerobic biodegradability of municipal primary and secondary sludge with increasing levels of partially dewatered fat, oil, and grease (FOG) was assessed using a mixed methanogenic culture at 35 "C. Under batch conditions with an acclimated and enriched microbial population, the sludge loading was 3 kg volatile solids/m3 and the highest FOG loading tested was 1.5 kg volatile solids/m3, resulting in a methane yield of 245 mL methane/g sludge volatile solids added at 35 degrees C and 1010 mL methane/g FOG volatile solids added at 35 degrees C. Under semicontinuous feeding conditions, the sludge and sludge plus FOG loading tested were 3 and 3.75 kg volatile solids/m3-d, respectively. Within 23 days of operation, the volatile fatty acid concentrations were reduced below 200 mg chemical oxygen demand/L (187 mg/L as acetic acid). Enhancement of sludge digestion was observed in those reactors where codigestion of sludge and FOG took place, which was attributed to a higher level of microbial activity maintained in these reactors as a result of FOG degradation. The results of this study demonstrate that beneficial use of FOG through codigestion with municipal sludge is feasible.  相似文献   

11.
Influence of ultrasonication on anaerobic bioconversion of sludge.   总被引:1,自引:0,他引:1  
The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.  相似文献   

12.
This study explored the biodegradation potential of two agricultural pesticides (2,4-D and isoproturon) as well as their effect on the performance of the anaerobic digestion process. Three 3.5 L batch reactors were used, having the same initial isoproturon concentration (25 mg/L) and different 2,4-D concentrations (i.e. 0, 100, or 300 mg/L, respectively). All systems were fed with equal amounts of primary sludge and digested sludge and operated at the low mesophilic range (32 ± 2°C). Following an acclimation period of approximately 30 days, complete 2,4-D removal was achieved, whereas isoproturon biodegradation was practically negligible. The presence of 2,4-D did not have a direct effect on acidogenesis since soluble organic carbon [expressed either as volatile fatty acids (VFAs) or as total organic carbon (TOC)] peaked within the first 10 days of operation in all bioreactors. Utilization of VFAs however appeared to follow two distinct patterns: one pattern was represented by acetate and butyrate (i.e. no acid accumulation) while the other was followed by propionate, isobuturate, valerate and isovalerate (i.e. acid accumulation, duration of which was related to the initial 2,4-D concentration). On the whole, all reactors exhibited a successful digestion performance demonstrated by complete VFAs utilization, considerable gas production (containing 45 to 65% methane by volume), substantial volatile suspended solids (VSS) reduction (42 to 50%), as well as pH and alkalinity recovery.  相似文献   

13.
苯酚的厌氧生物处理   总被引:3,自引:0,他引:3  
采用不断增加苯酚浓度而降低葡萄糖浓度的方法可驯化厌氧污泥中的微生物,使厌氧污泥最终以苯酚为唯一碳源生长,可显著提高厌氧污泥降解苯酚的能力;对苯酚间歇厌氧降解过程进行了分析。苯酚浓度在0~1.680 mg/L范围内,其厌氧降解过程符合一级动力学。Aiba模型、Haldane模型和Teisser 模型均可很好地描述处于对数期时厌氧污泥的比生长速率与初始底物浓度之间的关系,其中以Teisser 模型模拟的效果最好。将驯化污泥接种于UASB中可实现对含酚废水处理的连续运行,最大的有机负荷达2 g COD/(L·d),稳定运行时苯酚的去除率可维持在96%以上。  相似文献   

14.
高氯离子味精尾母液废水厌氧处理研究   总被引:2,自引:0,他引:2  
味精尾母液废水COD浓度极高同时含有大最氯离子.采用UASB反应器对味精尾母液废水进行处理,其中接种污泥来自啤酒厂UASB反应器.实验表明:当氯离子浓度在4 500 mg/L以下时,对厌氧微生物没有明礁的抑制作用;5 000 mg/L的氯离子浓度可以看作一个抑制限值,但经过驯化后,仍可获得较好的COD去除效果;当氯离子浓度达到8 000mg/L左右时,COD平均去除率在80%以上.  相似文献   

15.
复合酸化剂对电镀污泥中铬、铜的去除效果   总被引:1,自引:1,他引:0  
陈曦  王玉军 《环境工程学报》2012,6(10):3735-3739
以电镀加工厂产生的污水污泥作为主要研究对象,研究了柠檬酸、硝酸、过氧化氢为复合酸化剂,Fe3+为增效剂对电镀污泥中铬和铜的去除效果,考察了酸化剂的浓度、反应时间、摇床转速、污泥pH、Fe3+浓度等因素对污泥中重金属去除效率的影响。结果表明:在室温下,含0.15 mol/L柠檬酸、1.5%过氧化氢、0.25 mol/L硝酸的复合酸化剂与增效剂2.0g/L Fe3+溶液共同处理污泥,固液比为1∶10,以150 r/min的转速振荡4 h,对污泥中Cr的去除效率达到80.02%,Cu的去除效率可达到92.89%,使污泥中残留Cr、Cu含量均符合国家污泥农用标准。  相似文献   

16.
催化铁与生物法耦合除磷工艺特性   总被引:1,自引:0,他引:1  
为了研究催化铁与生物耦合后对生物除磷特性的影响,实验采用人工配水用厌氧/好氧间歇流式富集培养聚磷微生物。对比发现,催化铁与生物耦合组中厌氧末段ORP降低了约60mV,pH值小幅度的上升(≤0.3),整个培养过程中铁离子的浓度开始快速增加,之后趋于稳定(约40mgFe/gMLSS)。对好氧末段污泥SVI值比较发现,耦合工艺污泥沉降性能得到改善。除磷曲线比较发现,耦合组中厌氧末段磷的释放量下降,而好氧阶段磷的吸收速率增加;胞内聚合物提取表明,耦合组厌氧末段聚磷菌细胞内PHA含量有提高,好氧末段糖原含量有下降。磷形态提取分析表明,耦合组好氧末段污泥中无机态PO3 4-- P含量更高。低浓度铁离子可以起到与生物耦合同步除磷的目的,本工艺长期运行未发现耦合体系中催化铁对除磷的抑制作用。  相似文献   

17.
pH值对污泥发酵产酸的影响   总被引:1,自引:0,他引:1  
利用剩余污泥厌氧发酵产生挥发性脂肪酸,可作为污水脱氮除磷的有机碳源,而pH值是发酵产酸过程中重要的控制参数.研究了不同pH值条件下剩余污泥厌氧发酵产酸过程中各参数变化规律,探索pH值对其过程的影响及其分析.结果表明,碱性条件有利于污泥发酵产酸过程,实验最佳条件是控制反应初始pH值为10.0,仅8d发酵挥发性脂肪酸浓度就达到8.90 mmol/L.此外,污泥在发酵过程中,酸性条件下NH4+-N和PO43--P的释放量均大于碱性条件.  相似文献   

18.
为探讨稻秆负荷(即稻秆VS/污泥VSS)与发酵pH对稻秆厌氧发酵产酸系统启动过程产挥发性脂肪酸(VFAs)效果的影响,利用厌氧搅拌罐反应系统考察在不同的稻秆负荷(0.556、0.945、1.334和1.724 g/g)和不同的发酵pH(8.0、9.0和10.0)启动运行条件下的产酸性能,并分析了系统启动过程产酸与稻秆主要成分降解之间的关系。实验结果表明,VFAs浓度随稻秆负荷提高而增大,随发酵pH的升高而降低;发酵18 d时,发酵pH为9.0时,稻秆负荷1.334 g/g的产酸效果最好,VFAs浓度与稻秆产酸量分别为4 385.10 mg/L和2.19 gVFAs/g稻秆,此时半纤维素、纤维素和酸性洗涤木质素降解率分别为32.69%、22.53%和6.40%;稻秆负荷为0.945 g/g条件下,VFAs浓度在pH为8.0时达到最高值4 409.51 mg/L,此时稻秆降解量也最多,半纤维素、纤维素和酸性洗涤木质素降解率分别为28.60%、47.32%和22.69%。研究表明,稻秆负荷与发酵pH通过影响稻秆半纤维素、纤维素和木质素的降解影响稻秆厌氧发酵产酸的进程和效果。  相似文献   

19.
为了提高污泥水解酸化过程中的挥发酸产量,获取污水脱氮除磷所需的内碳源,以深圳市罗芳污水厂的二沉池污泥为研究对象,采用不同的碱量对其进行预处理。通过测定碱预处理污泥水解酸化过程中的挥发酸浓度,并采用聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction denature gradient gel electrophoresis,PCR-DGGE)技术对参与碱预处理污泥水解酸化产酸过程的主要微生物种群进行分析,结果表明,当碱投加量为0.20 g NaOH/g VSS时,初始溶出的蛋白浓度为1 780 mg/L;水解酸化15 d时,挥发酸总量达到3 473 mg/L;参与产酸的主要细菌属于Firmicutes、Proteobacteria、Bacteroidetes三个门类。  相似文献   

20.
Free fatty acids and sterols were assessed in fresh manure and anaerobic lagoon sludge from swine production facilities in North Carolina. Eight free fatty acids and five sterols were identified and quantified in both manure and sludge samples. Compound identification was performed by gas chromatography/mass spectroscopy (GC-MS), and compound quantities were determined by gas chromatography after solid phase extraction with a 50:50 mixture of diethyl ether and hexane. The free fatty acids occurring in greatest abundance in both fresh manure and lagoon sludge were palmitic, oleic, and stearic. Free fatty acid content in fresh manure ranged from approximately 3 microg g(-1) dry weight (dw) to over 45 microg g(-1) dw. In lagoon sludge, free fatty acid content ranged from about 0.8 microg g(-1) dw to nearly 4 microg g(-1) dw. Coprostanol and epicoprostanol were the sterols in largest concentrations in fresh manure and lagoon sludge samples. Total sterol content ranged from approximately 0.5 microg g(-1) dw to around 11 microg g(-1) dw in fresh manure and from 3.5 microg g(-1) dw to almost 9 microg g(-1) dw in lagoon sludge. Fresh manure and lagoon sludge both had high levels of inorganic cations (e.g., Ca, Mg, Fe) capable of binding free fatty acids and forming insoluble complexes, thereby potentially reducing fatty acid biodegradation. In anaerobic lagoons, sterols are an organic fraction of sludge that are resistant to bacterial degradation. In the case of fresh manure, fatty acids could represent a potential source of energy via the manufacture of biodiesel fuel, if efficient means for their extraction and transesterification can be devised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号