首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The jumbo squid, Dosidicus gigas, is an oceanic top predator in the eastern tropical Pacific that undergoes diel vertical migrations into mesopelagic oxygen minimum zones (OMZs). Besides glycogen breakdown, the pathways of the squid’s metabolic (suppression) strategy are poorly understood. Here, juvenile D. gigas were exposed to oxygen levels found in the OMZ off Gulf of California (1 % O2, 1 kPa at 10 °C) with the aim to identify, via proteomic tools, eventual anaerobic protein degradation as potential energy source at such depths. Under hypoxia, total protein concentration decreased nonsignificantly from 79.2 ± 12.4 mg g?1 wet mass to 74.7 ± 11.7 mg g?1 wet mass (p > 0.05). Yet, there was a significant decrease in heat-shock protein (Hsp) 90 and α-actinin contents (p < 0.05). The lower α-actinin concentration at late hypoxia was probably related to decreased protection of the Hsp90 chaperon machinery resulting in increased ubiquitination (p < 0.05) and subsequent degradation. Thus, the present findings indicate that D. gigas might degrade, at least under progressing hypoxia, specific mantle proteins anaerobically to increase/maintain anaerobic ATP production and extend hypoxia exposure time. Moreover, the ubiquitin–proteasome system seems to play an important role in hypoxia tolerance, but further investigations are necessary to discover its full potential and pathways.  相似文献   

2.
The accumulation of cadmium was investigated in two species of oysters [Crassostrea gigas (L.) and Ostrea edulis (L.)] from the same environment and in oysters of the same species (O. edulis) from two different environments (contaminated and uncontaminated), under controlled laboratory conditions (33‰ salinity, 10°C, 100 μg Cd l-1) for up to 111 d in 1982. C. gigas accumulated cadmium twice as fast as O. edulis (1.07 vs 0.52 μg Cd g-1 wet wt d-1). Furthermore, O. edulis from an uncontaminated environment accumulated cadmium faster than O. edulis from a metal-contaminated environment (0.52 vs 0.34 μg Cd g-1 wet wt d-1). There was no effect of cadmium exposure on total soft-tissue copper and zinc concentrations. Investigation of cytosolic metal-binding using Sephadex G-75 gel-permeation chromatography indicated that binding to very low molecular weight ligands (MW<1000) accounted for>70% of the cytosolic zinc in all oysters and>40% of the cytosolic cadmium in all oysters except O. edulis from Conwy at 83 d. In copper-contaminated oysters, excess copper was also associated with very low molecular weight ligands. Intermediate molecular weight cadmium/copper-binding proteins (similar to metallothionein in molecular weight) were observed in the cytosol and were shown to differ between species in terms of their behavior on Sephadex G-75. Finally, the distribution of accumulated cytosolic cadmium in O. edulis from the contaminated environment was shown to have a unique distribution, i.e., there was no cadmium associated with high molecular weight cytosolic macromolecules. The data indicate that both genetic and environmental factors influence cadmium accumulation in oysters.  相似文献   

3.
Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.  相似文献   

4.
The time-course of uptake and elimination of benzo(a)pyrene (BaP) for the Pacific oyster, Crassostrea gigas and reproduction damage and reproductive outputs were studied. Sexually immature C. gigas broodstock were fed for 28 days with live algae grown in four BaP solutions of 0, 50, 500, and 5,000 μg L−1 (hereafter, control, 50, 500, and 5,000 oysters) and were subsequently conditioned to maturation by a feeding with BaP-free live algae under temperature manipulation for another 28 days. The 5,000 μg L−1 oysters gained a steady state concentration, around 30,000 ng g−1 d.w. for digestive gland, a week earlier compared to the 500 μg L−1 oysters. The earlier gain or longer persistence of the steady state concentration influenced elimination of BaP, with an eliminating trend for 500 μg L−1 oysters, while no elimination for 5,000 μg L−1 oysters. The maternal persistence of the steady state concentration resulted in significant damages in the reproductive success and their reproductive outputs in terms of the hatching rate and larval growth, survival, and settlement. The 50 μg L−1 oysters remained far below the steady state concentration, and showed a manifest eliminating behavior during the subsequent BaP-free 28 day maturation period. The reproductive success and initial larval events of 50 μg L−1 oysters were comparable to those of control. However, the damage potential of the 50 μg L−1 oysters might be more significant if their maternal exposure continued beyond 28 days, since the accumulation profile at this dose was linear.  相似文献   

5.
Valve activity rhythm of the oyster Crassostrea gigas is mainly driven by tides in the field, but in the laboratory, only a circadian clock mechanism has been demonstrated. In an attempt to reconcile these results, the mechanisms underlying the circatidal rhythm were studied in the laboratory under different entrainment or free-running regimes and in the field at Arcachon (44°39′N/1°09′W) in February–April 2011). Results confirm the existence of a circadian clock in C. gigas. Under entrainment regimes (12-h dark/12-h light photoperiod and tidal cycles simulated by a reversing current flow), oysters exhibited both circadian and circatidal cycles. Under free-running conditions (e.g., continuous darkness), the endogenous rhythm appeared to be circadian. There was no experimental evidence for an endogenous circatidal rhythm, even in oysters just transferred from the field, where a clear tidal cycle was expressed. There are two possible mechanisms to explain tidal behavior in C. gigas: an exogenous tidal cue that drives tidal activity and masks the circadian rhythm and an endogenous circatidal clock that is sensitive to tidal zeitgebers and runs at tidal frequency.  相似文献   

6.
Trachurus capensis is an important fisheries resource in the degraded Namibian upwelling ecosystem. Food supply and shoaling of hypoxic zones are hypothesised to influence the species’ recruitment success. This paper is the first to quantify energy requirements and hypoxia tolerance of larval and juvenile stages of a Trachurus species. We measured normoxic respiration rates of T. capensis with a size range from 0.001 to 20.8 g wet mass (WM) collected off Cape Town (33.9°S, 18.5°E, 12/2009) and in the northern Benguela (17–24°S, 11–15°E, 02/2011). Routine metabolic rate (RMR) and standard routine rate (SRR) (mg O2 h?1) followed the allometric functions RMR = 0.418 WM0.774 and SRR = 0.275 WM0.855, respectively. Larvae and juveniles had comparatively high metabolic rates, and the energy demand of juveniles at the upper end of the size range appeared too high to be fuelled by a copepod diet alone. T. capensis’ early life stages showed a high tolerance to hypoxic conditions. RMR in larvae did not change until 30 % O2sat at 18 °C. In juveniles, critical oxygen saturation levels were low (PC for SRR = 11.2 ± 1.7 % O2sat and PC for RMR = 13.2 ± 1.6 % O2sat at 20 °C) and oxy-regulation effective (regulation index = 0.78 ± 0.09). A high hypoxia tolerance may facilitate the retention of larvae in near-shore waters providing favourable feeding conditions and allowing juveniles to exploit food resources in the oxygen minimum zone. These mechanisms seem to well adapt T. capensis to a habitat affected by spreading hypoxic zones and probably enhance its recruitment success.  相似文献   

7.
Rates and direction of movement in the sand dollar Peronella lesueuri were measured in summer and winter in Cockburn Sound, a large coastal embayment in south-western Australia. P. lesueuri was found to have a diurnal activity pattern throughout the year and had a greater movement rate in the summer (mean of 5.3 cm h?1, day; 3.9 cm h?1, night) than in the winter (mean of 2.7 cm h?1, day; 2.0 cm h?1, night). Seasonal change in temperature and physiological requirements by the sand dollar are the most likely reason for the seasonal differences. Reasons for diurnal variation were not clear. Direction of movement was found to be random at both times of the year. Based on these movement rates, one sand dollar can bioturbate an approximate area of 0.1 m2 day?1 and 36.4 m2 year?1. At a conservative density estimate of 0.5 sand dollars per m2 it takes approximately 20 days for the sand dollars to rework the entire area of the sediments in the habitats they occupy.  相似文献   

8.
The influence of dietary elemental contents on consumer stoichiometry was investigated in selected and combined soft tissues (as a proxy of the whole individual) of the omnivorous sea urchin, Lytechinus variegatus. We raised urchins for 4 months in controlled seawater tanks using three different diets with different nutritional contents (from lower to higher: seagrass, red macroalgae, and a formulated diet). Individuals fed the different diets varied an average of 19.7, 19.4, and 38 % in C:N, C:P, and N:P ratios, respectively, with stronger temporal variability for C:P and N:P ratios across tissues and whole individuals. This resulted in homeostasis parameters (1/H) of ?0.45, 0.09, and 0.38, respectively, for C:N, C:P, and N:P, indicative of homeostatic to weakly homeostatic organisms, at least for C:P and N:P ratios. Individuals fed the nutrient-rich formulated diet had higher growth rates (14 ± 0.83 g WW month?1) than those fed macroalgae or seagrass (9.3 ± 0.57 and 3.4 ± 0.33 g WW month?1, respectively). However, rapid body increments in more nutritional diets caused both a decrease in the %N and an increase in the %P of soft tissues, which resulted in significant but opposite effects of diet stoichiometry and growth in sea urchin C:N (R = ?0.74 and R = 0.93, for diet and growth effects, respectively) and N:P ratios (R = 0.60 and R = ?0.63, also, respectively, for diet and growth effects). Among potential compensatory mechanisms helping to preserve certain levels of homeostasis, ingestion rates (g WW diet per g WW of urchin) were higher for seagrass and macroalgae diets than for the nutrient-rich formulated diet. In contrast, absorption and growth efficiencies displayed significant negative associations with nutrient contents in diets and did not exhibit nutritional compensation. Overall, our results suggest that resource stoichiometry strongly determines the growth rate of individuals (R = 0.88, P < 0.01), and moderate variability in C:N:P ratios of sea urchins possibly arise from differences in the allocation of proteins and RNA to body components, similarly to what has been proposed by the growth rate hypothesis.  相似文献   

9.
Swarms of the pelagic tunicate, Thalia democratica, form during spring, but the causes of the large interannual variability in the magnitude of salp swarms are unclear. Changes in asexual reproduction (buds per chain) of T. democratica populations in the coastal waters of south-east Australia (32–35°S) were observed in three austral springs (October 2008–2010). T. democratica abundance was significantly higher in 2008 (1,312 individuals m?3) than 2009 and 2010 (210 and 92 individuals m?3, respectively). There was a significant negative relationship (linear regression, r 2 = 0.61, F 1,22 = 33.83, P < 0.001) between abundance and asexual reproduction. Similarly, relative growth rates declined with decreasing abundance. Generalised additive mixed modelling showed that T. democratica abundance was significantly positively related to preferred food >2 μm in size (P < 0.05) and negatively related to the proportion of non-salp zooplankton (P < 0.001). Salp swarm magnitude, growth, and asexual reproduction may depend on the abundance of larger phytoplankton (prymnesiophytes and diatoms) and competition with other zooplankton.  相似文献   

10.
The life-history traits of long-lived benthic littoral invertebrates remain poorly understood. In this study, we analysed patterns of growth in three abundant sublittoral sponges from the western Mediterranean Sea, chosen for their close phylogenetic relatedness, sympatric distribution, and contrasting amounts of photosymbionts: high in Ircinia fasciculata, lower in I. variabilis, and absent in I. oros. Sponge area, perimeter, number of oscula, and epibiont abundance were quantified from in situ digital images taken monthly for 1.5 years and volumetric growth rates were calculated from empirical area–volume relationships. Volumetric growth rates were different among species and coherent with the photosymbiont abundance: high in I. fasciculata (40.03 ± 4.81 % year?1, mean ± SE), low in I. variabilis (5.65 ± 6.11 % year?1), and almost nil in I. oros (?0.04 ± 3.02 % year?1). Furthermore, a marked seasonality was observed in the first two species, with greater growth during the warm season. The high growth rates of I. fasciculata were likely fuelled by symbiont-derived photosynthates and required to compete in the well-lit, algal-dominated habitats this species prefers. In contrast, I. variabilis and I. oros tended to dwell in shaded habitats, where competition from slow-growing invertebrates is intense, and featured lower growth rates. The flattened morphology and lower circularity of I. variabilis indicates a capacity for adaptation to any space that is freed, while I. oros had less oscula and was more massive and circular, suggesting a strategy of passive occupation and minimisation of biological interactions. The results show that even congeneric species living sympatrically can achieve important biomass using different growth and substrate occupation strategies.  相似文献   

11.
A total of 96 bacterial cultures were isolated from soil. Seventeen bacterial isolates were selected following their cultivation on solid media containing 100 mg · L?1 carbofuran as the sole source of carbon and nitrogen. Of the 17 isolates, 10F, 11M, 17N, 23B and 26M were specifically chosen because of their relatively higher growth efficiency and genetic diversity based on Box-polymerase chain reaction analysis. These bacterial cultures had 16S rRNA gene sequences that were most similar to Acinetobacter baumannii (10F), Agrobacterium tumefaciens (11M), Ochrobactrum anthropi (17N), Escherichia coli (23B) and Agrobacterium tumefaciens (26M) with 97, 95, 93, 95 and 94% similarity in their 16S rDNA gene sequence, respectively. Degradation rates of carbofuran in soil inoculated with these isolates were 1.9, 1.5, 1.6, 1.7 and 1.6 times, respectively, faster in comparison with uninoculated soil after 10 days of incubation. The maximum degradation rates of carbofuran (45 and 91%) were detected in soil inoculated with A. baumannii (10F) after 10 and 20 days’ incubation, respectively. These data indicate that these isolates may have the potential for use in bioremediation of pesticide contaminated soil.  相似文献   

12.
Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7′N, 12°1.1′W) and spawned in July 2011. Larvae were exposed to Ambient (400 μatm CO2), MidCO2 (700 μatm), or HighCO2 (1,000 μatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.  相似文献   

13.
Marine cladocerans are important contributors to the zooplankton community of tropical and temperate coastal ecosystems during the warmer months, when they show explosive population growth. Despite this fact, little information is available on their ecology compared with the extensive studies on their freshwater relatives. The main objective of this study was to determine the in situ feeding and growth rates, and life history parameters of Penilia avirostris in São Sebastião Bay (Brazil) during austral summer 2004, as a premise to understand the advantages of this cladoceran in oligotrophic waters. Culture development experiments, monitored for a period of 12 days, showed that maximum juvenile release occurred after 2 days, and that the development duration of a complete cohort was around 9 days. From bottle incubation grazing experiments, significant ingestion rates upon flagellates, ciliates, dinoflagellates and diatoms were detected. Flagellates were the most important contributors to P. avirostris diet (ca. 80%). P. avirostris ingested between 28 and 97% of its own carbon biomass per day (daily ration) and individual growth rates of this marine cladoceran (0.10–0.24 d?1) increased with prey availability. The combination of ingestion rates of natural prey and growth rates provided gross growth efficiencies (GGE) of 15–53%, on a carbon basis. Our results suggest that P. avirostris has similar GGE to copepods, although at low food conditions the values for the marine cladocerans seems slightly higher. However, this characteristic alone does not explain the explosive growth and community dominance shown by P. avirostris. Therefore, other traits related to the reproductive biology of the species, such as short generation time, parthenogenetic reproduction, and continuous somatic growth, seems to be mostly responsible for the success of P. avirostris in many marine ecosystems during their seasonal occurrence.  相似文献   

14.
The chemical composition of kelps (e.g. polyphenolics) deters grazing by herbivores, but kelp detritus is potentially a source of nutrition for suspension feeders. The effects of kelp detritus derived from two species [Agarum fimbriatum Harvey and Costaria costata (Turner) Saunders] on feeding of oysters, Crassostrea gigas Thunberg, and mussels, Mytilus trossulus Gould, were examined in feeding experiments. Fresh and aged kelp particles were sequentially presented in combination with the microalga Rhodomonas lens at an initial total concentration of 5᎒-4 ml-1. Aging of kelp particles for 4 days in seawater significantly reduced the concentration of polyphenolics without changing the total carbon or nitrogen content. Clearance rates of both mussels and oysters were significantly lower in the presence of fresh versus aged kelp particles, and clearance rates declined overall with declining polyphenolic concentrations. Video endoscopy was used to examine feeding selectivity at the level of the gill in oysters in the same food treatments used in the clearance rate experiments. Comparison of particle composition in the water versus the pseudofeces in both oysters and mussels was also used as a measure of feeding selectivity. When presented with R. lens in combination with fresh and aged kelp particles selectivity for R. lens tended to be greater against fresh than aged particles, and there was some indication that this was stronger for A. fimbriatum than for C. costata particles. The ability to select was lower at very high polyphenolic concentrations, which may reflect poisoning of sensory binding sites. These data suggest that bivalves distinguish among particles of varying chemical composition and respond by changing their clearance rates and their selectivity.  相似文献   

15.
It has been hypothesized that endolithic photo-autotrophs inside the skeleton of cold-water corals may have a mutualistic relationship with the coral host positively affecting coral calcification. This study investigated the effect of endolithic photo-autotrophs on the apical septal extension of the cold-water coral Desmophyllum dianthus at Fjord Comau, southern Chile (42.41°–42.15°S, 72.5°W). The fluorescent staining agent calcein was used to document the linear apical extension of septae for a period of one and a half years between 2006 and 2007. The results showed a severe reduction in extension rates associated with the presence of endolithic photo-autotrophs. Infested individuals grew about half as fast as non-infested polyps with a median value of 1.18 μm day?1 compared to 2.76 μm day?1. Contrary to the initial hypothesis, these results point toward a parasitic relationship between D. dianthus and its endolithic photo-autotrophs potentially impairing coral fitness. However, further data on physiological parameters and other aspects of the calcification process are necessary to confirm these findings.  相似文献   

16.
Diurnal variability in chlorophyll fluorescence caused by dynamic irradiance conditions is an important issue when using pulse amplitude modulation fluorometry to measure physiological conditions of plants at the landscape scale. We examined the use of slopes and y-intercepts of diurnal effective photochemical efficiency of photosystem II (PSII) (ΔF/F m′) versus photosynthetically active radiation (PAR) regressions in addition to direct measurements of maximum photochemical efficiencies of PSII (F v/F m) values to assess physiological status of Thalassia testudinum seedlings in a controlled mesocosm study. Seedlings were exposed to two light treatments (full sun and 50–70 % light reduction) and three salinity treatments (20, 35, and 50). Measurements were taken at 0600, 0900, 1200, 1500, 1800, and 2100 hours in order to assess the diurnal variation in photochemical efficiency of PSII and PAR, with measurements at 2100 providing F v/F m. Results indicated significant effects of light and salinity on regression y-intercepts and measured F v/F m values. Shaded seedlings had higher values for both parameters, suggesting low-light acclimation. The highest salinity treatment resulted in significant reductions for both parameters, suggesting stress. Stress was also indicated by significant reductions in both seedling leaf growth and mean differences between seedling leaves and media osmolalities in the hypersaline treatments (152.0 ± 26.4 vs. 630 ± 40.2 mmol kg?1 for the control treatments). Slopes of ΔF/F m′ versus PAR significantly differed with varying light treatments, with full sun seedlings exhibiting shallower slopes than shaded seedlings, indicating higher efficiency of dissipation of excess energy (photoprotection). These experimental results confirm field data suggesting that diurnal ΔF/F m′ versus PAR regressions are responsive to changes in the physiological status of T. testudinum and that the y-intercepts of diurnal regressions may be used as a proxy for F v/F m.  相似文献   

17.
Larvae of oysters, Crassostrea gigas, were maintained without food for 1 to 8 d after fertilization, and fed daily thereafter. There was little difference in survival and growth between controls and larvae kept without food for 2 or 3 d. Survival and growth rates were depressed in larvae starved for 4 or 5 d. For larvae starved for 6 to 8 d, survival was negligible or nil; even those larvae which survived the starvation period died later in the presence of food, apparently because of impaired digestion. Therefore, food availability in the first few days after spawning appears to be of paramount importance to the successful recruitment of Pacific oysters.  相似文献   

18.
As a result of aquaculture activities, Pacific oysters Crassostrea gigas (Thunberg, 1793) have invaded European coasts. Using seven microsatellites, we found virtually no genetic differentiation between natural populations throughout the European range (from the south of the Wadden Sea (the Netherlands) to the south of France) and French cultivated oysters. The genetic homogeneity of Pacific oyster samples appears to be the result of repeated transfers from same seed stocks made for aquaculture and, to a lesser extent, widespread dispersal due to specific biological traits of this species. The only genetic differentiation of Sylt population in the north of the Wadden Sea (Germany) suggests a stronger, persistent impact of ongoing supply of new genetic material from hatchery production, corresponding to seeds selection made by breeders. All of our genetic data highlighted the importance of aquaculture practices on the genetic structure of the keystone invader C. gigas in Europe.  相似文献   

19.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

20.
The goal of this study was to quantify growth and metabolic responses of oysters to increased temperatures like those that will occur due to global warming. Impact of temperature on eastern oyster (Crassostrea virginica) shell growth and metabolism was investigated by sampling 24 sites along the eastern North American seaboard ranging from New Brunswick, Canada, to Florida, USA, in March and August 2013. There was a positive correlation between oyster shell thickness and site temperature. At southern sites, shells were up to 65 % thicker than at the northernmost site, likely due to higher precipitation of CaCO3 in warmer water. This was supported by laboratory experiments showing that thicker shells were produced in response to temperatures 2, 4, and 6 °C above ambient seawater temperatures (8–14 °C) in Connecticut, USA. Field experiments with oyster respiration were conducted during winter and summer at 13 sites to compare responses to thermal stress with latitude. Respiration rates were much higher during summer than winter, but the combination of summer and winter data fell along the same exponential curve with respect to temperature. At all sites, temperature-specific metabolic rates at elevated temperatures were lower than predicted, indicating significant seasonal acclimatization by C. virginica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号