共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent findings encourage the use of halophytes in constructed wetlands for domestic wastewater treatment due to their special physiological characteristics as the ability to accumulate heavy metals and salts in their tissues makes them ideal candidates for constructed wetland vegetation. In this particular study, we investigated the application of halophytic plants in a horizontal flow constructed wetland for domestic wastewater treatment purposes. The pilot plant which was situated in Crete (Greece) was planted with a polyculture of halophytes ( Tamarix parviflora, Juncus acutus, Sarcocornia perrenis, and Limoniastrum monopetalum). The system’s performance was monitored for a period of 11 months during which it received primary treated wastewater from the local wastewater treatment plant. Results show that halophytes developed successfully in the constructed wetland and achieved organic matter and pathogen removal efficiencies comparable to those reported for reeds in previous works (63% and 1.6 log units, respectively). In addition, boron concentration in the effluent was reduced by 40% in comparison with the influent. Salinity as expressed by electrical conductivity did not change during the treatment, indicating that the accumulation of salts in the leaves is not able to overcome electrical conductivity increasing due to evapotranspiration. The results indicate an improvement in the treatment of domestic wastewater via the use of halophyte-planted CWs. 相似文献
2.
A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal. The wetland was 6 x 3 x 0.4 m. Water discharge was 1000 l d(-1) and residence time was 7d. After the wetland was rendered impermeable, macrophytes from Middle Paraná River floodplain were transplanted. Influent and effluent quality was analyzed every 15 d. TP, Cr, Ni and Zn concentrations in leaves, roots and sediment (inlet and outlet) were measured monthly. Cover and biomass of predominant species were estimated. Also, greenhouse experiments were carried out to measure the effects of conductivity and pH on floating species. The variables measured in the influent were significantly higher than those in the effluent, except for HCO(3)(-) and NH(4)(+). TP and metal concentrations in sediment at the inlet were significantly higher than those at the outlet. Conductivity and pH of the incoming wastewater were toxic for the floating species. Typha domingensis displaced the other species and reached positive relative cover rate and biomass greater than those at the undisturbed natural environment. T. domingensis proved to be highly efficient for the treatment of wastewater. For that reason, it is the advisable species for the treatment of wastewater of high conductivity and pH enriched with metals, characteristic of many industrial processes. 相似文献
3.
采用水平潜流人工湿地系统处理微污染原水,同时考察了水力停留时间、温度、水力负荷以及植物的生长状况等对人工湿地系统处理效果的影响。结果表明,水平潜流人工湿地系统对微污染原水有较好的处理效果,COD、TP、TN、NH +4-N、NO -3-N和NO -2-N的平均去除率分别为51.55%、49.90%、51.74%、 47.36%、52.67%和63.23%。按照国家地表水环境质量标准(GB3838-2002),经过湿地处理后,出水COD平均值达到Ⅰ类;出水TP平均值达到Ⅱ类;出水TN平均值基本接近Ⅳ类;出水NH +4-N平均值达到Ⅱ类。另外,研究表明, 本系统在水力停留时间为3 d时,水力负荷为0.2 m/d处理效果最好,温度的变化与污染物的去除率呈正相关关系,植物生长旺盛程度直接影响着整个系统的处理效果。 相似文献
4.
The main objective of this study was to examine the efficacy and capacity of using constructed wetlands on industrial pollutant removal. Four parallel pilot-scale modified free water surface (FWS) constructed wetland systems [dimension for each system: 4-m (L)x1-m (W)x1-m (D)] were installed inside an industrial park for conducting the proposed treatability study. The averaged influent contains approximately 170 mg l(-1) chemical oxygen demand (COD), 80 mg l(-1) biochemical oxygen demand (BOD), 90 mg l(-1) suspend solid (SS), and 32 mg l(-1) NH(3)-N. In the plant-selection study, four different wetland plant species including floating plants [Pistia stratiotes L. (P. stratiotes) and Ipomoea aquatica (I. aquatica)] and emergent plants [Phragmites communis L. (P. communis) and Typha orientalis Presl. (T. orientalis)] were evaluated. Results show that only the emergent plant (P. communis) could survive and reproduce with a continuous feed of 0.4m(3)d(-1) of the raw wastewater. Thus, P. communis was used in the subsequent treatment study. Two different control parameters including hydraulic retention time (HRT) (3, 5, and 7d) and media [vesicles ceramic bioballs and small gravels, 1cm in diameter] were examined in the treatment study. Results indicate that the system with a 5-d HRT (feed rate of 0.4m(3)d(-1)) and vesicles ceramic bioballs as the media had the acceptable and optimal pollutant removal efficiency. If operated under conditions of the above parameters, the pilot-plant wetland system can achieve removal of 61% COD, 89% BOD, 81% SS, 35% TP, and 56% NH(3)-N. The treated wastewater meets the current industrial wastewater discharge standards in Taiwan. 相似文献
5.
This paper reports the pollutant removal performances of a hybrid wetland system in Bangladesh for the treatment of a tannery wastewater. The system consisted of three treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF) and a VF wetland. The wetlands were planted with common reed ( Phragmites australis), but employed different media, including organic coco-peat, cupola slag and pea gravel. In the first stage, experimental results demonstrated significant removal of ammonia (52%), nitrate (54%), BOD (78%), and COD (56%) under high organics loading rate (690 g COD m −2 d −1); simultaneous nitrification, denitrification, and organics degradation were attributed to the unique characteristics of the coco-peat media, which allowed greater atmospheric oxygen transfer for nitrification and organic degradation, and supply of organic carbon for denitrification. The second stage HF wetland produced an average PO 4 removal of 61%, primarily due to adsorption by the iron-rich cupola slag media. In the third treatment stage, which was filled with gravel media, further BOD removal (78%) from the tannery wastewater depleted organic carbon, causing the accumulation of NO 3 in the wastewater. Overall, the average percentage removals of NH 3-N, NO 3-N, BOD, COD, and PO 4 were 86%, 50%, 98%, 98% and 87%, respectively, across the whole hybrid system. The results provided a strong evidence to support widespread research and application of the constructed wetland as a low-cost, energy-efficient, wastewater treatment technology in Bangladesh. 相似文献
6.
采用柱状模拟器依次设计了潮汐上行和潮汐下行流人工湿地,以连续上行和连续下行流人工湿地作为对照,探讨了潮汐流人工湿地在秋季对模拟生活污水的净化能力和处理稳定性。研究表明,潮汐上行流、潮汐下行流、连续上行流、连续下行流对COD平均去除率分别为65.05%±9.07%、63.64%±8.24%、26.90%±8.49%、40.84%±6.18%。对TP平均去除率依次为45.57%±10.86%、40.16%±14.15%、23.23%±11.09%、33.28%±7.99%。潮汐上行流湿地对TN、NH4+-N去除率分别为40.63%±7.69%、23.26%±7.58%,潮汐下行流为35.98%±11.95%、22.68%±9.18%,高于连续上行流的8.20%±5.62%、11.72%±7.32%和连续下行流的13.06%±6.12%、23.38%±9.16%。4种湿地并未出现硝态氮累积现象,潮汐上行流和潮汐下行流人工湿地出水亚硝态氮总体变化趋势较为一致。连续上行流和连续下行流人工湿地,出水亚硝态氮和进水较为接近基本在0.02 mg·L-1左右。在湿地出水氮成分中,有机氮、NH4+-N、NO3--N、NO2--N占TN的平均比例依次为16.72%±3.50%、72.74%±6.49%、10.27%±3.84%、0.28%±0.20%。整体而言,在秋季潮汐流湿地对污染物也表现了较高的处理效果,且净化能力优于连续流湿地。 相似文献
7.
采用餐厨垃圾发酵液(food waste fermentation liquid, FWFL)作为潮汐流人工湿地(tidal flow constructed wetland, TFCW)外加碳源,考察其对污水处理厂尾水湿地脱氮效果的影响,并通过湿地氮转化速率、酶活性测定及微生物群落结构分析探究其机理。结果表明:投加FWFL后人工湿地中TN、NO 3--N、TP的去除率分别提高了15.7%~36.2%、3.3%~42.3%、11.2%~45.8%,且FWFL的添加不会对出水NH 4+-N和COD产生显著影响;FWFL可改善TFCW低温时的脱氮效果;投加FWFL后TFCW的反硝化速率、反硝化酶活性以及电子传递系统活性均有所提高,TFCW微生物的丰富度和多样性明显提高,微生物群落结构也趋于稳定,反硝化菌群大量增加。变形菌门( Proteobacteria)、拟杆菌门( Bacteroidetes)与念珠菌门( Candidatus Saccharribacteria)为优势菌门,水杆菌属( Aquabacterium)与产丁酸盐细菌属( Saccharibacteria genera incertae sedis)为优势菌属。 相似文献
8.
以椰糠作为湿地工作层主要填料,采用复合垂直流人工湿地处理海南天然橡胶加工业低浓度废水。结果表明,在144 mm/d水力负荷条件下,椰糠填料人工湿地对废水中的COD、BOD5、NH3-H及TP的去除率分别达到68.99%、66.49%、59.55%和75.22%,显著高于无椰糠对照组。当水力负荷提高至216 mm/d,系统运行稳定,出水水质仍能达到污水排放标准(GB 8978-1996)和《农业灌溉水质标准》(GB5084-92)。 相似文献
9.
为了探讨潜流人工湿地对微污染河水的净化效果,在野外条件下构建潜流人工湿地,分析了湿地中pH、氧化还原电位(ORP)和DO的进出水变化,考察了湿地中污染物的净化效果,探讨了温度对湿地净化效果的影响。各湿地进、出水DO浓度相差不大;除美人蕉湿地外,其余湿地出水pH较进水变化较小;植物湿地出水ORP较进水均有所增大。植物湿地对污染物的去除效果均优于空白湿地,且随着气温的升高,NH4+-N、TN和CODMn的去除率逐渐增加,去除率分别可达90%、50%和20%。TP去除率却未随温度发生明显变化,始终波动在30%~60%之间。相关性分析结果表明湿地中NH4+-N和TN的去除率与温度相关,较低的有机物浓度造成CODMn的去除率与温度相关性差,由于湿地对磷的去除主要以颗粒态磷(PP)为主,TP的去除与温度不相关。 相似文献
10.
以4种湿地植物为实验对象,在野外构建中试潜流人工湿地,研究了不同植物及植物连根收割对湿地运行效果的影响。结果显示,植物明显提升了湿地的去污效果;其中美人蕉湿地的TP和NH4+-N去除率最高,达到55.6%和78%;空心菜湿地的TN去除率最高,达到80.5%;芦竹湿地的COD去除率最高,为26.6%;植物连根收割后,湿地运行效果下降;其中TN去除率降至空白水平之下,而其他污染指标下降至略高于空白的水平。 相似文献
11.
通过对4种不同植物的表面流人工湿地系统处理新沂河河水的中试研究表明,在CODMn和NH 4-N进水浓度相同条件下,香蒲湿地系统出水CODMn平均浓度最低,仅为13.44 mg/L;美人蕉湿地系统出水NH 4-N平均浓度最低,仅为1.75 mg/L;香蒲和美人蕉湿地系统对CODMn的平均去除率都达到40%以上,而千屈菜和水葱湿地系统都低于30%;美人蕉、香蒲和千屈菜湿地系统对NH 4-N的平均去除率都达到65%以上,而水葱系统则低于60%.综合比较,香蒲和美人蕉湿地系统的净化能力较强.4种植物中水葱耐淹能力最强,完全淹水22 d以上依然生长良好;千屈菜耐淹能力最弱,完全淹水7 d后就开始枯萎,17 d后地上、地下部分全部死亡. 相似文献
12.
This study aimed at analysing the performance of horizontal subsurface flow constructed wetlands (CWs) to treat combined sewer overflow (CSO). Four horizontal subsurface flow CWs, organized in two groups (A and B) each with a planted (Phragmites australis) and a non-planted bed, were loaded with simulated CSO, with group B receiving twice the hydraulic load of group A. Beds were monitored for pH, dissolved oxygen, conductivity, redox potential, chemical oxygen demand (COD), total suspended solids (TSS) and enterococci. Porosity variations were also estimated. Monitoring was conducted during spring and wintertime, with regular and irregular loading frequencies. Results showed an average treatment efficiency of 90–100 % for TSS, 60–90 % for COD and 2–6 log for enterococci. Removal rates were especially relevant in the first 24 h for COD and TSS. TSS and enterococci removal did not exhibit the influence of macrophytes or the applied hydraulic load while COD’s removal efficiency was lower in the higher load group and in planted beds. 相似文献
13.
In order to characterize the effect of vegetation on performance of constructed wetlands (CWs) treating low and high chlorinated hydrocarbon, two pilot-scale horizontal subsurface flow (HSSF) CWs (planted with Phragmites australis and unplanted) treating sulphate rich groundwater contaminated with MCB (monochlorobenzene, as a low chlorinated hydrocarbon), (about 10 mg L −1), and PCE (perchloroethylene, as a high chlorinated hydrocarbon), (about 2 mg L −1), were examined. With mean MCB inflow load of 299 mg m −2 d −1, the removal rate was 58 and 208 mg m −2 d −1 in the unplanted and planted wetland, respectively, after 4 m from the inlet. PCE was almost completely removed in both wetlands with mean inflow load of 49 mg m −2 d −1. However, toxic metabolites cis-1,2-DCE (dichloroethene) and VC (vinyl chloride) accumulated in the unplanted wetland; up to 70% and 25% of PCE was dechlorinated to cis-1,2-DCE and VC after 4 m from the inlet, respectively. Because of high sulphate concentration (around 850 mg L −1) in the groundwater, the plant derived organic carbon caused sulphide formation (up to 15 mg L −1) in the planted wetland, which impaired the MCB removal but not statistically significant. The results showed significant enhancement of vegetation on the removal of the low chlorinated hydrocarbon MCB, which is probably due to the fact that aerobic MCB degraders are benefited from the oxygen released by plant roots. Vegetation also stimulated completely dechlorination of PCE due to plant derived organic carbon, which is potentially to provide electron donor for dechlorination process. The plant derived organic carbon also stimulated dissimilatory sulphate reduction, which subsequently have negative effect on MCB removal. 相似文献
14.
微生物气溶胶的种类、浓度和粒径分布与人类健康关系密切。采用MD8空气浮游菌采样仪和FA-1型6级筛孔撞击式空气微生物采样器,对人工湿地细菌和真菌气溶胶的数量和粒径分布进行研究。结果表明,人工湿地进水前,细菌和真菌气溶胶平均值较低,分别为64.0、126.0CFU/m3;进水后,细菌气溶胶平均值在6月26日达到最高,为2292.5CFU/m3,真菌气溶胶平均值在8月27日达到最高,为6200.0CFU/m3;易进入肺部的细菌和真菌(粒径为0.65~4.70μm)粒子数分别占粒子总数的22.2%~62.3%、54.2%~87.6%;空气细菌中值直径为1.88~4.13μm,空气真菌中值直径在3.00μm左右波动。空气细菌中革兰氏阳性菌明显多于革兰氏阴性菌,空气真菌主要为酵母菌、镰刀菌属、枝孢属、毛霉属、交链孢属、肉座菌属、枝霉属、青霉属和曲霉属。 相似文献
15.
In this research, the role of plants in improving microorganism growth conditions in subsurface flow constructed wetland (CW) microcosms was determined. In particular, microbial abundance and community were investigated during summer and winter in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms (control, CT). Results revealed that the removal efficiencies of pollutants and microbial community structure varied in winter with variable microbial abundance. During summer, PA comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, bacteria were more abundant in root surfaces than in sand. Plant presence positively affected microbial abundance and community. The potential removal ability of CT, in which Cyanobacteria and photosynthetic bacteria were abundant during summer, was more significantly affected by temperature reduction than that of PA with plant presence. 相似文献
16.
为确定煤灰渣作为垂直潜流人工湿地基质的可行性,通过静态吸附实验和煤灰渣去除生活污水中的磷素实验,表明煤灰渣对污水中磷素的吸附平衡时间较短,吸附速率较快.当温度降低时,煤灰渣的磷素吸附容量对吸附平衡浓度依赖性和吸附强度随之降低,最大理论吸附容量亦降低 83.10% .在处理0.5 m 3 /(m2·d)的生活污水中,煤灰渣对TP的平均去除率达86.03%,吸附方式包括物理吸附和化学吸附,同时得出煤灰渣最大磷素解析量占最大理论吸附容量的0.73%,在实际人工湿地应用中应注意磷素解析而形成的二次污染. 相似文献
17.
High concentration of nitrogen and phosphorus and imbalance of N/P can lead to the formation of water and the malignant proliferation of toxic microalgae. This study put forward the advanced nutrient removal with the regulation of effluent N/P as the core in order to restrain the eutrophication and growth of poisonous algae. According to the preliminary study and review, the optimal N/P for non-toxic green algae was 50:1. The horizontal sub-surface flow constructed wetland was filled with steel slag and ceramsite to achieve the regulation of effluent N/P. The results showed that steel slag had the stable P removal capacity when treating synthetic solution with low P concentration and the average removal rate for 1.5, 1.0, and 0.5 mg/L synthetic P solution was 2.98 ± 0.20 mg kg−1/h, 2.26 ± 0.15 mg kg−1/h, and 1.11 ± 0.10 mg kg−1/h, respectively. Combined with P removal rate and P removal task, the filling amount of steel slag along the SSFCW (sub-surface flow constructed wetland) was 3.22 kg, 4.24 kg, and 4.31 kg. In order to ensure the stability of dephosphorization of steel slag, the regeneration of P removal capacity was investigated by switching operation of two parallel SSFCW in 20 days for cycle. The N removal was limited for the deficiency of carbon source (COD (chemical oxygen demand)/TN = 3–4), and was stable at 18.5–31.9% which was less affected by temperature. Therefore, by controlling the process of quantitative P removal of steel slag, the effluent N/P in SSFCW can be stable at 40–60:1 in the whole year, so as to inhibit the malignant proliferation of toxic algae. 相似文献
18.
为了提高人工湿地对猪场废水的净化效果,通过改进湿地内部结构构建了4个潜流人工湿地单元,测定了湿地运行期间废水中COD、TN、TP和NH_4~+-N去除率4个指标,采用配对t检验、综合方差分析、聚类分析、判别分析和综合相关分析等多种统计分析方法,深入探讨季节、气温变化及湿地内部结构的改进对废水处理效果的影响。结果表明,湿地内部结构的改变对猪场废水中NH_4~+-N去除率影响最大,其次是TN,对TP影响最小,4个指标总体上在4个湿地单元间相互存在显著差异,去除效果IW-SFCWW-SFCWSFCWCK-CW。经聚类分析,4个指标在每个湿地单元中随季节变化都可以分为3类:1类(2、3、11和12月份)、2类(4、5和10月份)、3类(6、7、8和9月份);气温是影响4个指标的第一因素,对IW-SFCW的影响最大,其次是W-SFCW和SFCW,对CK-CW影响最小。4个指标随气温变化也可以分为3类:1类(3℃、4℃)、2类(8~16℃)、3类(21~27℃)。统计分析表明,改进潜流人工湿地内部结构和栽培植物能提高湿地对废水的净化效果;如果冬春季节对湿地增设保温措施,可以提高湿地对废水的净化效果。 相似文献
19.
人工湿地具有去除污染效果好、运行费用低和易维护等特点,已被广泛用于污水处理中.湿地植物在其中起着重要作用,主要包括直接吸收氮、磷等污染物,通过根系输氧促进根区的氧化还原反应与好氧微生物活动及增强和维持介质的水力传输等.综述了人工湿地植物的去污机理,阐述了湿地植物对生物可降解的有机物、营养性污染物和有毒有害物质净化的研究成果与应用,并展望今后进一步研究的重点. 相似文献
20.
The removal of 12 pharmaceuticals and personal care products (PPCPs) in two full-scale wastewater treatment plants (WWTPs) and a tertiary treatment system was studied. The ecological risks of effluents from both secondary and tertiary treatment systems as well as excess sludge were evaluated. Primary treatment and ultraviolet light disinfection showed limited ability to remove most selected PPCPs. The combination of an anaerobic process and triple-oxidation ditches can eliminate DEET better than the anaerobic/anoxic/oxic process. Adsorption to sludge played a key role in the removal of triclocarban. Multistage constructed wetlands as a tertiary treatment efficiently removed caffeine and ibuprofen from wastewater and could decrease the risk of partial selected PPCPs. Selected PPCPs residues in excess sludge generally produced higher risks to the ecological environment than effluents from WWTPs. 相似文献
|