首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
For decades, trees have been exposed to atmospheric S pollution (acid rains). They can thus fulfil their S requirements not only via the roots, but also via their needles. However, whether leaf-absorbed S has a different fate from that of root-absorbed S, or may be toxic to the plant, remains uncertain. Norway spruce trees have been contaminated with (35)SO(4)(2-) either via a nutrient solution, or via a spray, and their (35)S distribution has been analysed. In the case of foliar contamination, a high percentage of (35)S(-) was present in the form of SO(4)(2-), both on the surface and inside the youngest needles. In the case of root contamination, the (35)S of the youngest leaves was mainly incorporated into insoluble organic compounds. Older needles showed a different S distribution.  相似文献   

2.
The impact of 40 years of sulfur (S) emissions from a sour gas processing plant in Alberta (Canada) on soil development, soil S pools, soil acidification, and stand nutrition at a pine (Pinus contorta x Pinus banksiana) ecosystem was assessed by comparing ecologically analogous areas subjected to different S deposition levels. Sulfur isotope ratios showed that most deposited S was derived from the sour gas processing plant. The soil subjected to the highest S deposition contained 25.9 kmol S ha(-1) (uppermost 60 cm) compared to 12.5 kmol S ha(-1) or less at the analogues receiving low S deposition. The increase in soil S pools was caused by accumulation of organic S in the forest floor and accumulation of inorganic sulfate in the mineral soil. High S inputs resulted in topsoil acidification, depletion of exchangeable soil Ca2+ and Mg2+ pools by 50%, podzolization, and deterioration of N nutrition of the pine trees.  相似文献   

3.
The effects of two sulfur (S) sources (SO(4)(2-), S(0)), and three rates of S application (0, 30, 120 mgS/kg) on the formation of iron plaque in the rhizosphere, and on the root surface of rice, and As (arsenic) uptake into rice (Oryza sativa L.) were studied in a combined soil-sand culture experiment. Significant differences in As uptake into rice between +S and -S treatments were observed in relation to S sources, and rates of S application. Concentrations of As in rice shoots decreased with increasing rates of S application. The mechanism could be ascribed to sulfur, induced the formation of iron plaque, since concentrations of Fe in iron plaque on quartz sands in the rhizosphere, and on the root surface of rice increased with increasing rates of S application. The results suggest that sulfur fertilization may be important for the development approaches to reducing As accumulation in rice.  相似文献   

4.
Wang Z  Shan XQ  Zhang S 《Chemosphere》2002,46(8):1163-1171
Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.  相似文献   

5.
A field survey was performed in eastern Finland, where measured ambient SO2 concentrations were 1.4-3.8 microg m(-3) a(-1) and bulk S deposition 0.17-0.32 g m(-2) a(-1) in 1991-1993. The accumulation of sulphur (S) in needles of Scots pine (Pinus sylvestris L.) was studied with XRF, IC and FESEM analyses and the needle damage examined under a light microscope and by SEM. Foliar N concentrations were also measured. Foliar total S concentrations were observed to be above the normal S level (500-700 microg g(-1)) over almost the whole area. Slight chlorosis and/or necrosis of the needle tips and stomatal areas, changes in the needle surface waxes and localization of S into needle tips and mesophyll cells around the stomata suggested the impact of S deposition, as did the calculations of St/Nt, and 'predicted' and 'excess' S. A concentration of about 900 microg g(-1) may be considered a critical level for foliar St in areas with low N supply.  相似文献   

6.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, beta-CD and its two derivatives, randomly methylated beta-CD (RAMEB) and hydroxypropyl beta-CD (HP-beta-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of beta -CD and HP-beta -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated beta-CD and HP-beta-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

7.
The localization of sulfate reducing sites in forested catchments is of major importance, because dissimilatory sulfate reduction can be a considerable sink for deposited sulfate. To localize dissimilatory sulfate reduction sites in a forested catchment (northeastern Bavaria, Germany), three sites within the catchment (upland site, intermittent seep, fen) were investigated for delta 34S depth profiles of soil sulfur and potential sulfate reduction rates were measured with 35S radiolabeling. Stable sulfur isotopes indicate that aerobic metabolism is the dominant process on the upland site and the intermittent seep (delta 34S of soil sulfur between +1.6 and +9.0@1000) and dissimilatory reduction is not a significant sink for sulfate. However, results of the 35S radiolabeling indicated for the upland site that the soil has potentially high sulfate reduction rates under laboratory conditions. Soil sulfur of the fen was markedly depleted in 34S (delta 34S between -6 and +2.6@1000). Both, 34S and 35S data indicated that dissimilatory sulfate reduction is an ongoing process on this site. The 34S and 35S approaches are complementary. While measurements using 35S can show momentary potential for dissimilatory bacterial sulfate reduction, delta 34S data reflect long-term predominance of either assimilatory or dissimilatory S metabolism at a particular site.  相似文献   

8.
This study attempt to quantify and identify skeletal deformities in natural populations of Aphanius fasciatus collected from the Tunisian coast and tends to found a possible relationship between these anomalies and several types of pollutants presents in the environment. Fish were collected from one reference area (S1: coast of Luza) and three polluted areas (S2: industrialized coast of Sfax, S3: coast of Khniss and S4: Hamdoun’Oued). Various patterns of skeletal deformities were diagnosed using double staining technics, and the levels of heavy metals (Cd, Cu and Zn), various polycyclic aromatic hydrocarbons (PAHs) and estrogenic compounds were determined in water and sediment from different sites. Spatio-temporal variation of the spinal deformities frequencies in A. fasciatus show that high incidence of spinal anomalies has been recorded in population collected from S2 in comparison to three other ones. Morphological results indicated that skeletal deformities of adult A. fasciatus were grouped into 13 categories that described abnormalities on spines, vertebrae, arcs and mandibles. A total of 1025 abnormalities were quantified. The results of chemical analysis showed that the levels of heavy metals and PAHs were significantly higher in S2 than in S1, S3 and S4. High level of estrogenic activity was observed only in S4. A possible correlation between environmental exposures to a mixture of pollutants in coastal waters in S2 and spinal deformities in A. fasciatus was suggested.  相似文献   

9.
Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

10.
In order to quantify the atmospheric nitrate and sulfate deposition and to investigate factors related to the variability of deposition during 1983 and 1984, precipitation samples from five different meteorological stations in Schleswig-Holstein (Northern Germany) were collected in weekly intervals, using the bulk-sample method. The average element depositions in kg ha−1 a−1 were: 20 for S and 5.5 for N in List (North Sea Island Sylt) and Schleswig, 12 for S and 4.7 for N in Kiel, 16 for S and 4.3 for N in Luebeck and 18 for S and 4.2 for N in Quickborn near Hamburg.N and S concentrations showed a close relationship to the amount of precipitation and the following functions for the estimation of nitrate-N and sulfate-S deposition in Schleswig-Holstein could be derived: (x = precipitation in mm a−1, y = N or S deposition in kg ha−1 a−1) NO3-N: y = 0.003x + 2.29; SO4−S: y = 0.014x + 4.71. According to these relationships most of the element deposition occurred during atmospheric conditions of predominating winds from the west. Especially in the case of S, atmospheric deposition is the only external source of S supply for plants on many agricultural soils. Sometimes the low sulfur input is not sufficient to cover the requirements of agricultural crops in Schleswig-Holstein. Due to the negative S balance in many soils, future increase of S deficiency is expected.  相似文献   

11.
Environmental Science and Pollution Research - Investigating the responses of retention and output of sulfur (S) is significant to understand the impact of atmospheric S deposition on the S cycling...  相似文献   

12.
The paper reports a case of evident and widespread leaf damage on trees in southern Tuscany (Central Italy) attributed to the input of pollutants produced in a geothermal area. The main potentially phytotoxic substances are boron and hydrogen sulphide. Trees affected are conifers as well as both evergreen and deciduous broadleaves. In the present study the possible impact of geothermal pollutants on Quercus pubescens leaves has been considered. Leaf samples coming from three sampling locations (S1 inside the geothermal area; S2 on the margins; S3 outside) and three consecutive dates (June, July and August) were analyzed for the following parameters: sulphur and boron concentration; leaf area; leaf mass per area; chlorophyll fluorescence (Fv/Fm); chlorophyll a, chlorophyll b and carotenoid concentrations. Anatomical and ultrastructural observations were also performed. In all sampling location sulphur and boron concentrations are greater than the background values recorded in southern Tuscany in a previous survey. The sulphur concentration in leaves was higher in S1 than S2 and S3, but did not increase throughout the survey period. Boron reached the greatest concentrations in S2 and showed a continuous increase over the study period. Leaves subjected to a higher load of pollutants were smaller in size (in terms of leaf area), but were more sclerophyllous. Damaged chloroplasts and reduced Fv/Fm values were observed at S1 and S2, but chlorophyll concentration values were higher at S1. Such an apparent anomaly can possibly be explained by the onset of compensation and recovery mechanisms. Foliar injuries appeared to be related to boron concentration.  相似文献   

13.
To understand the influence of the reduction of SO2 emissions from a single source in the S and N deposition around its local environment, the application of the Sulphur Transport Eulerian Model 2 (STEM-II) was introduced in this paper. Observed local deposition patterns were analysed and explained in terms of the main processes involved in the pollutants deposition. It was necessary to take into account the limited availability of H2O2 because of its influence on both S(IV) and oxidized nitrogen deposition. In order to estimate the quantitative relationship between the SO2 emissions reduction and the observed S and N deposition patterns, these processes were simulated for different meteorological conditions. Simulation results were in agreement with both observed deposition patterns and limited availability of H2O2, specially if significant changes in the S deposition patterns were considered. Both observed and estimated S deposition patterns changed their top value location from the Southwest (1990) to the Northwest (1997) of the domain, because of the reduction of dry deposition. The global reduction of total S depositions, estimated and observed, were in good agreement too. Model simulations could explain the higher S dry deposition reduction, considering the emissions reduction strategy applied.  相似文献   

14.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

15.
Root absorption of chiral phenyl-35S-fonofos in cotton and corn plants revealed stereoselective differences between the two enantiomers. (S)p-Fonofos was absorbed at a faster initial rate and to a greater extent than the (R)p enantiomer in both plant species. Approximately 40% and 62% of the applied radioactivity was absorbed into the cotton plant 12 hr after application of (R)p- and (S)p-fonofos, respectively. In the corn plant, approximately 25% and 63% of the applied (R)p- and (S)p-fonofos was absorbed in the first 12 hrs. Little qualitative or quantitative difference in plant translocation between fonofos enantiomers was observed. (R)p-fonofos was found to be metabolized to a greater extent than the (S)p enantiomer in both cotton and corn plants.  相似文献   

16.
Decomposition of SF6 in an RF plasma environment   总被引:1,自引:0,他引:1  
Sulfur hexafluoride (SFd)-contained gas is a common pollutant emitted during the etching process used in the semiconductor industry. This study demonstrated the application of radio-frequency (RF) plasma in the decomposition of SF6. The decomposition fraction of SF6 [etaSF6 (C(in)-C(out))/C(in) x 100%] and the mole fraction profile of the products were investigated as functions of input power and feed O2/SF6 ratio in an SiO2 reactor. The species detected in both SF6/Ar and SF6/O2/ Ar RF plasmas were SiF4, SO2, Fe2, SO2F2, SOF2, SOF4, S2F10, S2OF10, S2O2F10, and SF4. The results revealed that at 40 W, etaSF6 exceeded 99%, and the reaction products were almost all converted into stable compounds such as SiF4, SO2, and F2 with or without the addition of oxygen. Sulfur oxyfluorides such as SO2F2, SOF2, SOF4, S2OF10, and S2O2F10 were produced only below 40 W. The results of this work can be used to design a plasma/chemical system for online use in a series of a manufacturing process to treat SF6-containing exhaust gases.  相似文献   

17.
Fine particles (PM2.5) were collected during all four seasons, from April 2001 to February 2002, in Seoul, South Korea, using an annular denuder system. Elemental compositions of ambient PM2.5 were analyzed using the proton-induced X-ray emission method. The greatest contributors (> or = 2%) to the PM2.5 mass were sulfur (S), silicon (Si), chlorine (Cl), aluminum (Al), and iron (Fe) in the spring; S in the summer; and S and Cl in the fall. S, Cl, and Si were the major elements in the winter. S was the most abundant species among the elements, ranging from 5.3 to 7.9%, followed by Si and Cl. From analysis of variance, PM2.5 mass, Al, Si, potassium, calcium, and Fe showed significant seasonal differences during the four seasons (p < 0.001). Enrichment factor (EF) analysis was carried out to identify the sources affecting the aerosol in the Seoul area. On the basis of the mean EF values, elemental S, copper, zinc, and lead may be emitted from anthropogenic sources (EF > 50). Elemental Al, Si, titanium, and Fe may be emitted from crustal sources (EF < 3). Additionally, a correlation analysis was carried out for source identification. The results of the correlation analysis were confirmed by the results of the EF analysis.  相似文献   

18.
Abstract

Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codis-posed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations >40,000 ppmv. Conversely, H2S concentrations were <1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.  相似文献   

19.
Hsi HC  Yu TH 《Chemosphere》2007,67(7):1434-1443
Leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from raw and solidified air pollution control (APC) residues with selected solvents, including acetic acid, simulated acid rain, humic acid, linear alkylbenzene sulfonate (LAS) and n-hexane was investigated. High-chlorinated PCDD/F congeners were observed in all leachates of raw APC residue samples, with the largest total leaching concentration (61.60 ngm(-3); 0.30 ngI-TEQm(-3)) from treatment with humic acid. Low-chlorinated congeners were mainly leached with LAS and n-hexane. Solidification and stabilization (S/S) processes with cement and sulfur-containing chelating agent decreased the leachability of PCDD/Fs by up to 98% with humic acid and LAS as solvents. However, S/S processes enhanced the leachability of both high- and low-chlorinated PCDD/F congeners with n-hexane as the solvent, which largely increased the toxic equivalent quantity of leachates. These results suggest that conventional S/S processes may effectively restrain the release of PCDD/Fs when APC residues are leached with rain water or natural organic compounds (e.g., humic acid), but may have a deteriorated effect when APC residues are leached with nonpolar organic solvents (e.g., n-hexane) coexisting in the landfill sites.  相似文献   

20.
Cyclodextrins (CDs), a class of cyclic oligosaccharide molecules containing a variety of chiral centre, are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. In this work, we selected three types of CDs, β-CD and its two derivatives, randomly methylated β-CD (RAMEB) and hydroxypropyl β-CD (HP-β-CD), to evaluate effects on toxicity of racemic fenoxaprop (rac-FA) and its R-enantiomer (R-FA) to freshwater alga Scenedesmus obliquus (S. obliquus) and their dissipation in S. obliquus suspension with and without CDs addition, respectively, in an attempt to get more detail about enantioselective behavior of fenoxaprop acid (FA) in the environment, using CDs as a remediation agent for FA and formulation additive for fenoxaprop-p-ethyl (FE). The significant difference between rac-FA and R-FA was not observed in their acute toxicity to S. obliquus and dissipation in S. obliquus suspension. RAMEB had no effect on either toxicity of FA to S. obliquus or dissipation of FA in S. obliquus suspension, and it also didn't change the extent of enantioselectivity in toxicity of FA to S. obliquus. But the addition of a certain amount of β -CD and HP-β -CD reduced the toxicity of FA to S. obliquus and increased dissipation of FA in S. obliquus suspension, as well as changed the enantioselectivity in toxicity of FA to S. obliquus. The results indicated β-CD and HP-β-CD could be used as a promising agent for remediation of aquatic contamination produced by FA, and RAMEB might be used as potential formulation additives for FE, the parent compound of FA, as RAMEB didn't decrease activity of R-FA and might be environmentally safer than the conventional additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号