首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.  相似文献   

2.
Uncertainties and novel prospects in the study of the soil carbon dynamics   总被引:12,自引:0,他引:12  
Wang Y  Hsieh YP 《Chemosphere》2002,49(8):791-804
Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades and therefore can be an important option in reducing atmospheric CO2 concentration. However, evaluation of soil carbon sources and sinks is difficult because the dynamics of soil carbon storage and release is complex and still not well understood. There has been rapid development of quantitative techniques over the past two decades for measuring the component fluxes of the global carbon cycle and for studying the soil carbon cycle. Most significant development in the soil carbon cycle study is the application of accelerator mass spectrometry (AMS) in radiocarbon measurements. This has made it possible to unravel rates of carbon cycling in soils, by studying natural levels of radiocarbon in soil organic matter and soil CO2. Despite the advances in the study of the soil carbon cycle in the recent decades, tremendous uncertainties exist in the sizes and turnover times of soil carbon pools. The uncertainties result from lack of standard methods and incomplete understanding of soil organic carbon dynamics, compounded by natural variability in soil carbon and carbon isotopic content even within the same ecosystem. Many fundamental questions concerning the dynamics of the soil carbon cycle have yet to be answered. This paper reviews and synthesizes the isotopic approaches to the study of the soil carbon cycle. We will focus on uncertainties and limitations associated with these approaches and point out areas where more research is needed to improve our understanding of this important component of the global carbon cycle.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.  相似文献   

4.
珠江三角洲潮土和水稻土对不同种类的酸具有一定的缓冲性,不同种类的酸对不同类型土壤的酸化趋势不同。大旺水稻土对酸的敏感性强于龙山潮土,龙山潮土属于稍易受害的稍敏感土壤,大旺水稻土属于易受害的敏感土壤;同一土壤对酸的缓冲能力比对碱的缓冲能力强;不同种类的酸对土壤的敏感性不同,土壤对硝酸的敏感性强于对硫酸的敏感性;土壤加酸后酸缓冲曲线和土壤中铝释放曲线的交点可以作为衡量土壤对酸敏感性的指标,交点越低,敏感性越强;加酸后土壤中铝的释放可以用模型y=nx+k来预测。  相似文献   

5.
Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration.  相似文献   

6.
Factors controlling change in biodegradation rate of the pesticide isoproturon with soil depth were investigated in a field with sandy-loam soil. Soil was sampled at five depths between 0-10 and 70-80 cm. Degradation rate declined progressively down the soil profile, with degradation slower, and relative differences in degradation rate between soil depths greater, in intact cores relative to sieved soil. Neither the maximum rate of degradation, or sorption, changed with soil depth, indicating that there was no variation in bioavailability. Differences in degradation rate between soil depths were not associated with the starting population size of catabolic organisms or the number of catabolic organisms proliferating following 100% degradation. Decreasing degradation rates with soil depth were associated with an increase in the length of the lag phase prior to exponential degradation, suggesting the time required for adaptation within communities controlled degradation rates. 16S rRNA PCR denaturing gradient gel electrophoresis showed that degradation in sub-soil between 40-50 and 70-80 cm depths was associated with proliferation of the same strains of Sphingomonas spp.  相似文献   

7.
A pilot-scale soil washing process, patented by BioTrol, Inc., was demonstrated on soil contaminated by wood treating waste, primarily pentachlorophenol (PCP) and creosote-derived polynuclear aromatic hydrocarbons (PAHs). Although soil washing was the main object of this demonstration, the treatment train that was evaluated included two other BioTrol technologies for treatment of waste streams from the soil washer. The three technologies were: The BioTrol Soil Washer (BSW)--a volume reduction process, which uses water to separate contaminated soil fractions from the bulk of the soil. The BioTrol Aqueous Treatment System (BATS)--a biological water treatment process. The Slurry Bioreactor (SBR)--a BioTrol biological slurry treatment process conducted in an EIMCO BIOLIFT reactor. The sandy soil at the site, consisting of less than 10 percent of fines, was well suited for treatment by soil washing. The soil washer was evaluated in two tests on soil samples containing 130 ppm and 680 ppm of PCP, respectively. The BSW successfully separated the feed soil (dry weight basis) into 83 percent of washed soil, 10 percent of woody residues, and 7 percent of fines. The washed soil retained about 10 percent of the feed soil contamination while 90 percent of the feed soil contamination was contained within the woody residues, fines, and process water. The soil washer achieved up to 89 percent removal of PCP and 88 percent of total PAHs, based on the difference between their levels in the as-is (wet) feed soil and the washed soil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A pilot-scale soil washing process, patented by BioTrol, Inc., was demonstrated on soil contaminated by wood treating waste, primarily pentachlorophenol (PCP) and creosote-derived polynuclear aromatic hydrocarbons (PAHs). Although soil washing was the main object of this demonstration, the treatment train that was evaluated included two other BioTrol technologies for treatment of waste streams from the soil washer. The three technologies were: ? The BioTrol Soil Washer (BSW)—a volume reduction process, which uses water to separate contaminated soil fractions from the bulk of the soil.

? The BioTrol Aqueous Treatment System (BATS)—a biological water treatment process.

? The Slurry Bioreactor (SBR)—a BioTrol biological slurry treatment process conducted in an EIMCO BIOLIFTtm reactor.

The sandy soil at the site, consisting of less than 10 percent of fines, was well suited for treatment by soil washing. The soil washer was evaluated in two tests on soil samples containing 130 ppm and 680 ppm of PCP, respectively.

The BSW successfully separated the feed soil (dry weight basis) into 83 percent of washed soil, 10 percent of woody residues, and 7 percent of fines. The washed soil retained about 10 percent of the feed soil contamination while 90 percent of the feed soil contamination was contained within the woody residues, fines, and process water.

The soil washer achieved up to 89 percent removal of PCP and 88 percent of total PAHs, based on the difference between their levels in the as-is (wet) feed soil and the washed soil. PCP concentrations of 14 ppm and 87ppm in the washed soil were achieved from PCP concentrations of 130 ppm and 680ppm in the feed soil. Concentrations of total PAHs were reduced from 247 ppm to 42 ppm and 404 ppm to 48 ppm, respectively, in the two tests.

The BATS degraded up to 94 percent of PCP in the process water from soil washing. PAH removal could not be determined due to low influent concentrations.

The SBR achieved over 90 percent removals of PCP and 70 to 90 percent removals of PAHs from the slurry of contaminated fines from soil washing. However, steady state operation was not achieved during the single test and the results were variable.

Cost of a commercial-scale soil washing, assuming use of all three technologies, was estimated to be $168 per ton of soil treated. Incineration of woody material accounts for 76 percent of the cost.  相似文献   

9.
14C-terbuthylazine was applied to three Brazilian soils in closed aerated laboratory microcosms, both under standardized and under natural Brazilian climate conditions. Volatilization from soil to air, leaching from soil to percolate water, and transport from upper to deeper soil layers were higher in sandy soil than in clay soil and in organic soil. Mineralization of 14C-terbuthylazine to 14CO2 was higher in sandy soil than in clay and organic soils under standardized climatic conditions, whereas it was higher in organic soil than in sandy soil under Brazilian summer conditions. Under natural Brazilian summer conditions, leaching as well as vertical transport within the soil were enhanced as compared to standardized climate conditions comprising lower precipitation rates; volatilization was strongly reduced under high irrigation conditions.  相似文献   

10.
Toxicity of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) to earthworm was evaluated. Both MNX and TNX had lethal and sublethal effects on earthworms. Exposure to MNX- or TNX-contaminated soil caused a significant concentration-dependent decrease in earthworm survival and growth. The lowest observed lethal concentration (LOLC) for both MNX and TNX was 100 and 200 mgkg(-1) soil dry weight in the sandy loam soil and in the silt loam soil, respectively. No earthworms survived for 14 days in MNX- or TNX-spiked soil at 500 mgkg(-1) soil dry weight. After 7 days exposure, the lowest observed effect concentration (LOEC) for earthworm growth was 50 mgkg(-1) soil dry weight for TNX and 100 mgkg(-1) soil dry weight for MNX in both soil types. The LC20 and LC50 for MNX in sandy loam soil were 114 and 262 mgkg(-1) and for TNX, they were 114 and 254 mgkg(-1) soil dry weight, respectively. The corresponding values for MNX and TNX in silt loam soil were 234 and 390 mgkg(-1) soil dry weight, respectively, and 200 and 362 mgkg(-1) soil dry weight, respectively. After 35 days exposure, earthworm growth was reduced 8-39% by TNX in sandy loam soil, whereas TNX only inhibited earthworm growth 5-18% at the same concentration range in silt loam soil. LC20 and LC50 for TNX were slightly lower than for MNX; this indicates that TNX was more toxic than MNX. No significant morphological or developmental abnormalities were observed in earthworms surviving exposure.  相似文献   

11.
西北地区土壤中石油类污染物的垂直渗透规律   总被引:14,自引:1,他引:14  
针对西北地区独特的地理环境,讨论了西北地区油田开发过程中产生的石油类污染物在土壤中的迁移渗透规律及防治措施。由于土壤的吸附作用,石油类污染物主要积聚在土壤表层80cm以内,对表层土壤影响较大。可以采用修建收油池、防渗填埋的处理方法,减少其污染范围。  相似文献   

12.
土壤及土壤-植物系统中复合污染的研究进展   总被引:3,自引:0,他引:3  
土壤复合污染是土壤污染的主要存在形式 ,在分析中 ,主要从土壤重金属复合污染和土壤重金属 有机污染物复合污染方面进行了较为全面的综述 ,评价了土壤复合污染的多种表征方法 ,并且讨论了该研究当前仍存在的一些问题  相似文献   

13.
A comparison between sludge ash and fly ash on the improvement in soft soil   总被引:2,自引:0,他引:2  
In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4-2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20-30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil.  相似文献   

14.
To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.  相似文献   

15.
公路周边土壤重金属污染及植物修复   总被引:1,自引:0,他引:1  
随着中国公路建设迅猛发展,公路周边土壤重金属污染也日趋严重。文中结合近年来国内外的研究情况,以公路土壤污染中的铅、镉、锌、铜、铬等元素为重点,对土壤重金属污染的危害、分布特征及其影响因素,以及相应的植物修复技术等相关研究进行综述。  相似文献   

16.
The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at H?lv?l? (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.  相似文献   

17.
Addition of organic wastes to agricultural soils is becoming a common practice as a disposal strategy and to improve the physical and chemical soil properties. However, in order to optimise the use of organic wastes as soil amendments, their effect on the behaviour of other compounds that are also used in agriculture, such as pesticides, needs to be assessed. In this work, we have investigated the effects of the addition of the final solid residue of the new technology of olive-oil extraction (extracted alperujo or solid olive-mill waste, SOMW2) on the sorption, degradation and leaching of the herbicide simazine in a sandy loam soil. The results are compared with those of a previous study, where the intermediary by-product of the olive-oil processing technology (unextracted alperujo or SOMW1) was applied to the same soil. The soil was amended in the laboratory with SOMW2 at two different rates (5% and 10% w/w). Simazine sorption isotherms showed a great increase in herbicide sorption after SOMW2 addition to soil. SOMW2 addition also increased sorption irreversibility. Incubation studies revealed reduced biodegradation of simazine in the soil amended with SOMW2 compared to the unamended soil. Breakthrough curves of simazine in handpacked soil columns showed that SOMW2 addition retarded the vertical movement of the herbicide through the soil and greatly reduced the amount of herbicide available for leaching. Interestingly, the results were quantitatively different from those obtained for the intermediary by-product SOMW1, illustrating the importance of the specific characteristics of the organic amendment in determining its effect on pesticide behaviour.  相似文献   

18.
Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards.  相似文献   

19.
Leaching of the organophosphorus nematicide fosthiazate   总被引:1,自引:0,他引:1  
Fosthiazate is an organophosphorus nematicide which was recently included in Annex I of the Directive 91/414/EEC under the clause that it should be used with special care in soils vulnerable to leaching. Thus, the leaching of fosthiazate was investigated in columns packed with three different soils which represented situations of high (site 2), intermediate (site 1) and low (site 3) leaching potential. The recommended dose of fosthiazate was applied at the surface of the soil columns and fosthiazate fate and transport was investigated for the next two months. Fosthiazate concentrations in the leachate collected from the bottom of the columns packed with soil from site 2 exceeded 0.1 microgl(-1) in most cases. This soil was characterized as acidic, indicating longer fosthiazate persistence, with low organic matter content, indicating weak adsorption, thus representing a situation vulnerable to leaching. In contrast, the lowest concentrations of fosthiazate in the leachate were evident in the columns packed with soil from site 3. This soil was characterized as alkaline, indicating faster degradation, with higher organic matter content, indicating stronger adsorption, thus representing a situation not favoring leaching of fosthiazate. The highest concentration of fosthiazate in the leachate from the columns packed with soil from site 2 was 3.44 microgl(-1) compared to 1.17 and 0.16 microgl(-1), which were the corresponding maximum values measured in columns packed with soil from sites 1 and 3, respectively. The results of the current study further suggest that fosthiazate is mobile in soil and can leach under conducive soil conditions like acidic soils with low organic matter content.  相似文献   

20.
Gao B  Yang L  Wang X  Zhao J  Sheng G 《Chemosphere》2000,41(3):419-426
Three soils were modified with two kinds of cationic surfactants in order to increase their sorptive capabilities for organic contaminants. Sorption of diesel fuel oil in water by these modified soils had been investigated. Modified soils can effectively sorb diesel fuel oil from water. The sorption capability of modified soils is: HDTMA-black soil > HDTMA-yellow brown soil > HDTMA-red soil > TMA-black soil > TMA-yellow brown soil > TMA-red soil. Sorption of diesel fuel oil by natural soils and HDTMA modified soils is via partition, the sorption isotherms can be expressed by Henry equation, and logK(SOM) is 2.42-2.80, logK(HDTMA) is 3.37-3.60. Sorption isotherms of TMA modified soils can be expressed by Langmuir equation, the saturation sorption capacities are 1150 (TMA-black soil), 750 (TMA-yellow-brown soil), 171 mg/kg (TMA-red soil), respectively. A diesel fuel oil degradation micro-organism (Pseudomonas sp.) was isolated in the lab. To test the influence of the modified soils on the micro-organism, various growth curves of Pseudomonas in different conditions were drawn. Pseudomonas can grow very well with natural soils and TMA modified soils. The acclimation period of Pseudomonas is reduced. As to HDTMA modified soils, HDTMA loading amount is very important. When HDTMA loading amount is no higher than 0.5 CEC, the micro-organism can grow very well after a long acclimation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号