首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
棘孢曲霉(Aspergillus aculeatus)对Pb2+和Cd2+的吸附特征   总被引:3,自引:2,他引:1  
为了研究棘孢曲霉(Aspergillus aculeatus)对溶液中Pb2+和Cd2+吸附过程的特征,分别从动力学、热力学和吸附等温线三方面进行了实验,同时还研究了pH、温度、时间、重金属离子起始浓度和吸附剂用量对吸附过程的影响。等温吸附过程可以用Langmuir方程来描述。在实验设定条件下,棘孢曲霉对Pb2+和Cd2+最大吸附量分别为71.2 mg/g和59.8 mg/g;动力学实验数据很好的符合二级  相似文献   

2.

Cu(II) adsorption in continuous column using green adsorbents like peanut and almond shell was investigated. Fourier transform infrared (FTIR) spectroscopy, Brunaer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and Point of Zero charge (pHpzc) determination have been used for characterization of the adsorbents. Experiments were conducted at various operating conditions to calculate the adsorption capacity of the adsorbents. Adsorption studies signify that both the adsorbents have good adsorptive capacity for Cu(II) ion. Equilibrium of adsorption was described using Langmuir isotherm and the highest qmax value for both the adsorbent were obtained at an operating condition of 20 ml/min flow rate, 15 mg/L influent Cu(II) concentration, and 7 cm bed depth. Regeneration of both the adsorbents suggests that these adsorbents can be used several times for Cu(II) removal. Seven different kinetic models were tested among which the modified dose response model was fitted well for peanut shell and the Thomas model was fitted well for almond shell. These fitted models were further used for scale-up design. Regeneration studies show that peanut shell and almond shell are useful up to the fifth adsorption cycle. Application of these adsorbents with industrial effluent was also reported. This study reveals that peanut and almond shells can be used for Cu(II) removal for industrial wastewater.

  相似文献   

3.
Ammonia nitrogen pollution control is an urgent issue of landfill. This research aims to select an optimal refuse for ammonia nitrogen removal in landfill from the point of view of adsorption and desorption behavior. MSW (municipal solid waste) samples which deposit ages were in the range of 5 to 15 years (named as R15, R11, R7, and R5) were collected from real landfill site. The ammonia nitrogen adsorption behaviors of MSW including equilibrium time, adsorption isotherms, and desorption behaviors including equilibrium time were determined. Furthermore, the effects of pH, OM, Cu(II), Zn(II), and Pb(II) on adsorption and desorption behavior of ammonia nitrogen were conducted by orthogonal experiment. The equilibrium time of ammonia nitrogen adsorption by each tested MSW was very short, i.e., 20 min, whereas desorption process needed 24 h and the ammonia nitrogen released from refuses was much lesser than that adsorbed, i.e., accounted for 3.20 % (R15), 14.32 % (R11), 20.59 % (R7), and 20.50 % (R5) of each adsorption quantity, respectively. The maximum adsorption capacity estimated from Langmuir isotherm appeared in R15-KCl, i.e., 25,000 mg kg?1. The best condition for ammonia nitrogen removal from leachate was pH >7.5, OM 23.58 %, Cu(II) <5 mg L?1, Zn(II) <10 mg L?1, and Pb(II) <1 mg L?1. Ammonia nitrogen in landfill leachate could be quickly and largely absorbed by MSW but slowly and infrequently released. The refuse deposited for 15 years could be a suitable material for ammonia nitrogen removal.  相似文献   

4.

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

  相似文献   

5.

Copper ions were first adsorbed by zeolite 4A synthesized from bauxite tailings, the desorption of Cu(II) using Na2EDTA solutions was performed, and the recycling of zeolite 4A in adsorption and desorption was systematically investigated. It was observed that the Cu(II) removal efficiency was directly dependent on the initial pH value. The maximum removal efficiency of Cu(II) was 96.2% with zeolite 4A when the initial pH value was 5.0. Cu(II) was completely absorbed in the first 30 min. It was also observed that the desorption efficiency and zeolite recovery were highly dependent on the initial pH and concentration of Na2EDTA in the solution. The desorption efficiency and percent of zeolite recovered were 73.6 and 85.9%, respectively, when the Na2EDTA solution concentration was 0.05 mol L?1 and the pH value was 8. The recovered zeolites were pure single phase and highly crystalline. After 3 cycles, the removal efficiency of Cu(II) was as high as 78.9%, and the zeolite recovery was 46.9%, indicating that the recovered zeolites have good adsorption capacity and can repeatedly absorb Cu(II).

  相似文献   

6.

This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pHpzc) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L)?1/n] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  相似文献   

7.
The present study attempts to analyze the biosorption trend of biosorbent Caulerpa fastigiata (macroalgae) biomass for removal of toxic heavy metal ion Pb (II) from solution as a function of initial metal ion concentration, pH, temperature, sorbent dosage, and biomass particle size. The sorption data fitted with various isotherm models and Freundlich model was the best one with correlation coefficient of 0.999. Kinetic study results revealed that the sorption data on Pb (II) with correlation coefficient of 0.999 can best be represented by pseudo-second-order. The biosorption capacity (q e ) of Pb (II) is 16.11?±?0.32 mg g?1 on C. fastigiata biomass. Thermodynamic studies showed that the process is exothermic (ΔH° negative). Free energy change (ΔG°) with negative sign reflected the feasibility and spontaneous nature of the process. The SEM studies showed Pb (II) biosorption on selective grains of the biosorbent. The FTIR spectra indicated bands corresponding to –OH, COO?, –CH, C?=?C, C?=?S, and –C–C– groups were involved in the biosorption process. The XRD pattern of the C. fastigiata was found to be mostly amorphous in nature.  相似文献   

8.
In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5–5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π–π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.  相似文献   

9.
Background, aim, and scope  Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. Materials and methods  On the basis of the chemical coprecipitation of calcium oxalate (CaC2O4), bromopyrogallol red (BPR) was embedded during the growing of CaC2O4 particles. The ternary C2O4 2––BPR–Ca2+ sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. Results  The saturation number of BPR binding to CaC2O4 reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 × 105 M–1. Over 80% of the sorbent particles are between 0.7 and 1.02 μm, formed by the aggregation of the global CaC2O4/BPR inclusion grains of 30–50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC2O4/BPR inclusion material adsorbed EV over two times more efficiently than the activated carbon. The adsorption of EV on the CaC2O4/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb2+, and approximately 50% of Cd2+ and Cu2+, were removed in a high Zn2+-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu2+, and 60% of Ni2+ and Cd2+, were removed in a high Cd2+-electroplating wastewater. Discussion  The embedment of BPR into CaC2O4 particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca2+, BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC2O4 particles. Immediately, C2O4 2– captured the Ca2+ to form the CaC2O4 outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC2O4 layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. Conclusions  By characterizing the C2O4 2––BPR–Ca2+ inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC2O4)95(BPR)] n 2n, an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover, the adsorption is hardly subject to the impact of electrolytes. Recommendations and perspectives  The present work provides a simple and valuable method for preparing the highly effective adsorbent. If a concentrated BPR wastewater was reused as the inclusion reactant, the sorbent will be low cost. By selecting the inclusion ligand with a special structure, we may prepare some particular functional materials to recover the valuable substances from seriously polluted wastewaters. The recommended method will play a significant role in development of advanced adsorption materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.

Purpose

This work aimed at investigating the adsorption of lead and cadmium onto Fe and Ag nanoparticles for use as a water contaminant removal agent as a function of particle type, sorbent concentration, and contact time.

Methods

Fe and Ag spherical nanoparticles were prepared in water by the lab-made electro-exploding wire (EEW) system and were investigated for their structure properties. Adsorption experiments were carried out at room temperature and pH 8.3 water solutions.

Results

The removal/adsorption of both Pb(II) and Cd(II) ions was found to be dependent on adsorbent dosage and contact time. Pb(II) adsorption onto Fe and Ag nanoparticles showed more or less similar efficiency and behavior. The kinetic data for the adsorption process obeyed pseudo second-order rate equations. The calculated equilibrium adsorption capacities (q e) were 813 and 800 mg/g for Pb sorption onto Fe and Ag nanoparticles, respectively. Cd(II) ion adsorption onto Fe nanoparticles obeyed pseudo second-order rate equations with q e equal to 242 mg/g, while their adsorption onto Ag nanoparticles obeyed pseudo first-order rate equations with q e of 794 mg/g. The calculated q es are in quite agreement with the experimental values. The removal/uptake mechanisms of metal ions involved interaction between the metal ion and the oxide/hydroxyl layer around the spherical metallic core of the nanoparticle in water medium.

Conclusion

Fe and Ag nanoparticles prepared using the EEW technique exhibited high potentials for the removal of metal ions from water with very high adsorption capacities, suggesting that the EEW technique can be enlarged to generate nanoparticles with large quantities for field or site water purification.  相似文献   

11.

Purpose

The purpose of the research is to investigate the applicability of the low-cost natural biosorbents for the removal of Pb(II) ions from aqueous solution and effluent from battery industry.

Methods

Six different biosorbents namely rice straw, rice bran, rice husk, coconut shell, neem leaves, and hyacinth roots have been used for the removal of Pb(II) ions from aqueous solution in batch process. All the biosorbents were collected from local area near Kolkata, West Bengal, India. The removal efficiency was determined in batch experiments for each biosorbent.

Results

The biosorbents were characterized by SEM, FTIR, surface area, and point of zero charge. The sorption kinetic data was best described by pseudo-second-order model for all the biosorbents except rice husk which followed intraparticle diffusion model. Pb(II) ions adsorption process for rice straw, rice bran, and hyacinth roots were governed predominately by film diffusion, but in the case of rice husk, it was intraparticle diffusion. Film diffusion and intraparticle diffusion were equally responsible for the biosorption process onto coconut shell and neem leaves. The values of mass transfer coefficient indicated that the velocity of the adsorbate transport from the bulk to the solid phase was quite fast for all cases. Maximum monolayer sorption capacities onto the six natural sorbents studied were estimated from the Langmuir sorption model and compared with other natural sorbents used by other researchers. The Elovich model, the calculated values of effective diffusivity, and the sorption energy calculated by using the Dubinin?CRadushkevich isotherm were indicated that the sorption process was chemical in nature. The thermodynamic studies indicated that the adsorption processes were endothermic. FTIR studies were carried out to understand the type of functional groups responsible for Pb(II) ions binding process. Regeneration of biosorbents were carried out by desorption studies using HNO3. Battery industry effluents were used for the application study to investigate applicability of the biosorbents.

Conclusion

The biosorbents can be utilized as low-cost sorbents for the removal of Pb(II) ions from wastewater.  相似文献   

12.
The goal of this study was to evaluate cadmium and lead accumulation ability of in vitro cultures biomass containing selected edible mushroom species derived from the environment (Laetiporus sulphureus, Imleria badia) and those of commercial origin (Agaricus bisporus). Atomic absorption spectrometry was used to evaluate the content of Cd(II) and Pb(II) on the medium supplemented with Cd(II) or Pb(II), each of them at the same concentration of 5·10?5 M. The highest concentration of Cd(II) ions was determined in the biomass from L. sulphureus in vitro cultures, while the highest concentration of Pb(II) ions was found in the biomass from A. bisporus in vitro cultures. The greatest Cd(II) and Pb(II) accumulation ability in mycelium per dry weight was shown for L. sulphureus. Among the test species, biomass of A. bisporus showed the lowest ability for the bioaccumulation of Cd(II); however, comparable ability for the remediation of Pb(II) was provided by the biomasses from A. bisporus and I. badia in vitro cultures. The results confirm the possibility of using these mushroom species for remediation and indicate the relationship between bioaccumulation of heavy metals and the test species.  相似文献   

13.
In the present study, the effects of biosorbent Aspergillus niger dosage, initial solution pH and initial Ni(II) concentration on the uptake of Ni(II) by NaOH pretreated biomass of A. niger from aqueous solution were investigated. Batch experiments were carried out in order to model and optimize the biosorption process. The influence of three parameters on the uptake of Ni(II) was described using a response surface methodology (RSM) as well as Langmuir and Freundlich isotherm models. Optimum Ni(II) uptake of 4.82 mg Ni(II) g−1 biomass (70.30%) was achieved at pH 6.25, biomass dosage of 2.98 g L−1 and initial Ni(II) concentration of 30.00 mg L−1 Ni(II). Langmuir and Freundlich were able to describe the biosorption isotherm fairly well. However, prediction of Ni(II) biosorption using Langmuir and Freundlich isotherms was relatively poor in comparison with RSM approaches. The biosorption mechanism was also investigated by using Fourier transfer infrared (FT-IR) analysis of untreated, NaOH pretreated, and Ni(II) loaded A. niger biomass.  相似文献   

14.
Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.  相似文献   

15.

Melatonin (MT) and nitric oxide (NO) are known as scavengers of free radicals and an antioxidant against biotic and abiotic stresses in plant defense systems. However, whether NO interplays role in MT-induced antioxidant defense remains to be determined in the plants exposed to lead (Pb) toxicity. So, two experiments were designed to evaluate the role of NO in MT-mediated tolerance of maize plants to Pb stress. In the initial experiment, prior to starting different treatments, a solution of 0.05- or 0.10-mM MT was sprayed every other day for a period of 10 days to the leaves of maize plants exposed to Pb stress (0.1-mM PbCl2). Pb toxicity significantly caused reduction in plant biomass (both fresh and dry), PSII maximum efficiency (Fv/Fm), total chlorophyll, leaf potassium (K), calcium (Ca), and leaf water potential, but it resulted in increased levels of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), electron leakage (EL), leaf Pb, and endogenous NO. An addition experiment was set up to further understand whether NO played role in mitigation of Pb toxicity in maize plants by MT using scavengers of NO and cPTIO combined with the MT treatments. MT-induced tolerance to Pb toxicity was totally eliminated by cPTIO by reversing endogenous NO. The present results clearly indicated that MT mediated the endogenous NO to improve tolerance of maize plants to Pb toxicity. This evidence was also supported by the increases of H2O2 and MDA and reduces some antioxidant enzyme activities tested as well as the plant growth inhibition and increased leaf Pb content by application of MT combined with cPTIO.

  相似文献   

16.
Lead (II) has been as one of the most toxic heavy metals because it is associated with many health hazards. Therefore, people are increasingly interested in discovering new methods for effectively and economically scavenging lead (II) from the aquatic system. Recent studies demonstrate biosorption is a promising technology for the treatment of pollutant streams. To apply these techniques, suitable adsorbents with high efficiency and low cost are demanded. The waste biomass of Bacillus gibsonii S-2 biosorbent was used as low-cost biosorbent to remove metallic cations lead (II) from aqueous solution. To optimize the maximum removal efficiency, the effect of pH and temperature on the adsorption process was studied. The isotherm models, kinetic models and thermodynamic parameters were analysed to describe the adsorptive behaviour of B. gibsonii S-2 biosorbent. The mechanisms of lead (II) biosorption were also analysed by FTIR and EDX. The results showed that the optimum pH values for the biosorption at three different temperatures, i.e. 20, 30 and 40 °C, were determined as 4. The equilibrium data were well fitted to Langmuir model, with the maximum lead (II) uptake capacities of 333.3 mg?g?1. The kinetics for lead (II) biosorption followed the pseudo-second-order kinetic equation. The thermodynamic data showed that the biosorption process were endothermic (?G?<?0), spontaneous (?H?>?0) and irreversible (?S?>?0). The mechanism of lead (II) biosorption by the waste biomass of B. gibsonii S-2 biosorbent could be a combination of ion exchange and complexation with the functional groups present on the biosorbent surface. The application of the waste biomass of B. gibsonii S-2 for lead (II) adsorption, characterized with higher lead (II) sorption capacity and lower cost, may find potential application in industrial wastewater treatment.  相似文献   

17.

Nickel ferrite (NiFe2O4) nanoparticles are prepared through different routes (microwave, co-precipitation, and pyrolysis) and tested for water purification applications through adsorption removal of an acid red dye B as a model organic pollutant. The characterizations of the prepared samples were done using XRD, FT-IR, SEM, TEM, BET, UV-Vis absorbance, Raman spectrum, and vibrating sample magnetometer (VSM). All samples showed an inverse spinel crystal structure. The obtained results pointed out to the effect of the synthetic route on the morphology, particle size, optical, and magnetic properties of the prepared ferrites. Magnetic measurements showed super-paramagnetic behavior for all samples. The magnetic saturation (Ms) of the sample prepared by pyrolysis, was found to possess the highest saturation value, 34.8 emu/g. Adsorption experiments were performed under the change in several parameters, such as pH, adsorbent dosage, and initial dye concentration. A dye removal percentage of 99% was reached under the optimum state. The isothermal adsorption of the acid red dye was investigated using several models, in which the experimental data could be best described by the Freundlich model. Several kinetic and equilibrium models were inspected by linear regression analysis and showed best fitting for the adsorption data through pseudo-second-order model. The calculated thermodynamic parameters indicated that the adsorption of acid red dye onto all the ferrite samples is a spontaneous and endothermic physical adsorption process.

  相似文献   

18.
Sugarcane bagasse and hydroponic lettuce roots were used as biosorbents for Cu(II), Fe(II), Zn(II), and Mn(II) removal from monoelemental solutions in aqueous medium, at pH 5.5, using batch procedures. These biomasses were studied in natura (lettuce roots, NLR, and sugarcane bagasse, NSB) and modified with HNO3 (lettuce roots, MLR, and sugarcane bagasse, MSB). Langmuir, Freundlich, and Dubinin-Radushkevich non-linear isotherm models were used to evaluate the data from the metal ion adsorption assessment. The maximum adsorption capacities (qmax) in monoelemental solution, calculated using the Langmuir isothermal model for Cu(II), Fe(II), Zn(II), and Mn(II), were respectively 24.61, 2.64, 23.04, and 5.92 mg/g for NLR; 2.29, 16.89, 1.97, and 2.88 mg/g for MLR; 0.81, 0.06, 0.83, and 0.46 mg/g for NSB; and 1.35, 2.89, 20.76, and 1.56 mg/g for MSB. The Freundlich n parameter indicated that the adsorption process was favorable for Cu(II) uptake by NLR; Fe(II) retention by MLR and MSB; and Zn(II) sorption by NSB, MLR, and NSB and favorable for all biomasses in the accumulation of Mn(II). The Dubinin-Radushkevich isotherm was applied to estimate the energy (E) and type of adsorption process involved, which was found to be a physical one between analytes and adsorbents. Organic groups such as O–H, C–O–C, CH, and C=O were found in the characterization of the biomass by FTIR. In the determination of the biomass surface charges by using blue methylene and red amaranth dyes, there was a predominance of negative charges.  相似文献   

19.

In the present study, bio-apatite/nZVI composite was synthesized through Fe(III) reduction with sodium borohydride and was fully characterized by FTIR, XRD, SEM–EDX, TEM, BET, BJH, and pHPZC. Column experiments were carried out for the removal of phosphate as a function of four operational parameters including initial phosphate concentration (100–200 mg L?1), initial solution pH (2–9), bed height (2–6 cm), and influent flow rate (2.5–7.5 mL min?1) using a response surface methodology (RSM) coupled with Box-Behnken design (BBD). 2D contour and 3D surface plots were employed to analyze the interactive effects of the four operating parameters on the column performance (e.g., uptake capacity and saturation time). According to ANOVA analysis, the influent flow rate and bed height are the most important factor on phosphate uptake capacity and saturation time, respectively. A quadratic polynomial model was excellently fitted to experimental data with a high coefficient of determination (>?0.96). The RSM-BBD model predicted maximum phosphate adsorption capacity of 85.71 mg g?1 with the desirability of 0.995 under the optimal conditions of 135.35 mg L?1, 2, 2 cm, and 7.5 mL min?1 for initial phosphate concentration, initial solution pH, bed height, and influent flow rate, respectively. The XRD analysis demonstrated that the reaction product between bio-apatite/nZVI composite and phosphate anions was Fe3 (PO4)2. 8H2O (vivianite). The suggested adsorbent can be effectively employed up to five fixed-bed adsorption–desorption cycles and was also implemented to adsorb phosphate from real samples.

  相似文献   

20.
This work examined the adoption of a sorbent-assisted ultrafiltration (UF) system for the reduction of Pb(II), Cu(II), Zn(II) and Ni(II) from industrial wastewater. In such a system metals were removed via several processes which included precipitation through the formation of hydroxides, formation of precipitates/complexes among the metal ions and the wastewater compounds, adsorption of metals onto minerals (bentonite, zeolite, vermiculite) and retention of insoluble metal species by the UF membranes. At pH = 6 the metal removal sequence obtained by the UF system was Pb(II) > Cu(II) > Zn(II) > Ni(II) in mg g−1 with significant amount of lead and copper being removed due to chemical precipitation and formation of precipitates/complexes with wastewater compounds. At this pH, zinc and nickel adsorption onto minerals was significant, particularly when bentonite and vermiculite were employed as adsorbents. Metal adsorption onto zeolite and bentonite followed the sequence Zn(II) > Ni(II) > Cu(II) > Pb(II), while for vermiculite the sequence was Ni(II) > Zn(II) > Cu(II) > Pb(II) in mg g−1. The low amount of Pb(II) and Cu(II) adsorbed by minerals was attributed to the low available lead and copper concentration. At pH = 9 the adoption of UF could effectively reduce heavy metals to very low levels. The same was observed at pH = 8, provided that minerals were added. The prevailing metal removal process was the formation of precipitates/complexes with wastewater compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号