首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电渗透脱水对污泥热干燥特性的影响   总被引:1,自引:0,他引:1  
以污水厂机械脱水后的污泥作为研究对象,提出了采用电渗透-热干燥结合进行深度脱水的方法。通过对原泥以及电渗透脱水至不同含水率(67%、71%和76%)的污泥在热干燥过程中含水率和干燥速率的测定,分析电渗透脱水对污泥热干燥特性的改善规律。结果表明,经电渗透脱水至含水率为67%和71%的污泥在热干燥过程中的传热传质速率及干燥速率有明显提高,且干燥温度越高,电渗透后污泥的干燥速率与原泥的干燥速率差距越大。相同电压梯度及相同温度下电渗透至67%后进行热干燥耗能最少。实际应用中应结合能耗分析选择合适的电渗透程度及干燥温度,以达到最优效果。  相似文献   

2.

In this research work, the conventional single slope still (CSS) with egg shells of breed Gallus gallus domesticus cascara as sensible heat storage (SHS) material are studied experimentally to enhance the yield. In this experimental investigation, the proposed single slope still (PSS) with SHS material was made in comparison with the CSS to evaluate the productivity of fresh water under the same ambient conditions. Comparatively, this PSS has higher thermal conductivity than the CSS. The yield obtained from the PSS is 2.46 L/m2, while the yield from the CSS is 2.07 L/m2. The average rate at which the rise of output fresh water obtained from the PSS is 18% more than the fresh water output obtained from the CSS. The daily energy efficiency of the PSS is 26.07%, and for the CSS, it is only 22.25%. The daily exergy efficiency of the PSS is 2.36%, and for the CSS, it is only 1.67%. Since using the egg shell will employ as organic waste management and modification in this still is economical, less initial, and maintenance cost.

  相似文献   

3.
Abstract

Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

4.
A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18–28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d?1, which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%).  相似文献   

5.

The availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water. Exergy analysis is a strong inferential technique for evaluating the performance of thermal systems. Exergy is becoming more popular as a predictive tool for analysis, and there is a rising interest in using it. In this paper, performance analysis on the aspect of energy and exergy from the proposed solar still (PSS) (conventional solar still with the photovoltaic modules-AC heater) was analyzed on three different water depths (Wd) conditions (1, 2, and 3 cm). Using a solar still with an electric heater, the daily potable water production was found as 8.54, 6.37, and 4.43 kg, for the variations in water depth (Wd) of 1, 2, and 3 cm respectively. The energy and exergy efficiency of the PSS at the Wd of 1, 2, and 3 cm were 75.67, 51.45, and 37.21% and 5.08, 2.29, and 1.03%, respectively. At 1 cm Wd, PSS produced the maximum freshwater yield as compared to the other two water depths. When the Wd is increased from 1 to 2 cm and from 1 to 3 cm, the yield is decreased up to 27.3 and 52.7%, respectively. Similarly, the energy and exergy efficiency is decreased up to 36.8 and 53.2% and 50.4 and 80.6%, respectively. The water cost of the modified solar still is calculated as 0.028 $/kg for the least water thickness.

  相似文献   

6.

Studies on the production of biogas of different organic materials in an anaerobic environment are being carried out all over the world. The most important parameters in these researches can be listed as raw material potential, production processes, economic analyses, and environmental effects. Chicken manure is one of the raw materials used in biogas production. In this study, in addition to the analysis of biogas and energy production potential from chicken manure, greenhouse gas emissions were analyzed to evaluate environmental effects. In Turkey, chicken manure is not adequately processed and causes environmental pollution. The model biogas plant and potential energy generation were researched in this field study. The pilot plant produces 8.58 million m3 of biogas per year by processing about 110 thousand tons of waste. It produces 17 GWh/year of electricity and 16 GWh/year of thermal energy, as well as reducing CO2 greenhouse gas emissions by 13.86 thousand tons/year.

  相似文献   

7.

Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO4 2− ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m3·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.

  相似文献   

8.

This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system’s operation consumed 37.13 Wh m−3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8–1.0 kWh m−3) for such wastewater reclamation.

  相似文献   

9.

Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index related to odor pollution, i.e., species and concentration of VCs, olfactory odor concentration, and theoretic odor concentration, was quantified. Oxygenated compounds and hydrocarbons were the most abundant VCs in the three facilities. Different chemical species were quantified, and the following average concentrations were obtained: transfer station, 54 VCs, 2472.47 μg/m3; incineration plant, 75 VCs, 33,129.25 μg/m3; and landfill site, 71 VCs, 1694.33 μg/m3. Furthermore, the average olfactory odor concentrations were 20,388.80; 50,677.50; and 4951.17, respectively. The highest odor nuisance was detected in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R 2 = 0.918 (n = 15, P < 0.01). The result shows odor pollution risk transfer from landfill to incineration plant when adopting thermal technology to deal with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission.

  相似文献   

10.

The environmental fate of metazachlor herbicide was investigated under field conditions in rapeseed cultivated and uncultivated plots, over a period of 225 days. The cultivation was carried out in silty clay soil plots with two surface slopes, 1 and 5 %. The herbicide was detectable in soil up to 170 days after application (DAA), while the dissipation rate was best described by first-order kinetics and its half-life ranged between 10.92 and 12.68 days. The herbicide was detected in the soil layer of 10–20 cm from 5 to 48 DAA, and its vertical movement can be described by the continuous stirred tank reactor (CSTR) in series model. Relatively low amounts of metazachlor (less than 0.31 % of the initial applied active ingredient) were transferred by runoff water. More than 80 % of the total losses were transferred at the first runoff event (12 DAA), with herbicide concentrations in runoff water ranging between 70.14 and 79.67 μg L−1. Minor amounts of the herbicide (less than 0.07 % of the initial applied active ingredient) were transferred by the sediment, with a maximum concentration of 0.57 μg g−1 (12 DAA), in plots with 5 % inclination. Finally, in rapeseed plants, metazachlor was detected only in the first sampling (28 DAA) at concentrations slightly higher than the limit of quantification; when in seeds, no residues of the herbicide were detected.

  相似文献   

11.
梨形筒式好氧堆肥反应器的开发与应用   总被引:3,自引:0,他引:3  
针对现有堆肥反应器移动困难、难以使物料充分混合及堆肥效率不稳定等问题,开发了梨形筒式好氧堆肥反应器。从物料和热量平衡、通风量及搅拌方式优化等方面对反应器进行了研究。反应器主要包括梨形筒体、无轴螺旋导叶、通风系统、动力系统和控制系统等,具有易于移动、便于进/出料等优点。在通风量为2.0 L/min,初始物料投加量5.0kg(干重比∶粪便/锯末=1∶4),含水率约60%时,利用反应器对人粪便进行序批式堆肥实验,结果表明,反应器搅拌5 min后混合均匀率可达90%以上,符合混合均匀度的要求;堆体温度从第2天开始升温至50℃以上并保持30 d;TOC和COD均呈持续下降趋势,降解率分别为72.61%和72.81%;种子发芽指数为92.18%,可完全达到腐熟标准。  相似文献   

12.
This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.  相似文献   

13.

Heavy metals in higher concentrations are often encountered in domestic sewage of developing and under-developed countries. High metallic concentrations can stress reactor sludge biomass morphology impeding its performance in organics reduction. However, the extent of damage and ability of sludge biomass to recover from the metallic stress is not fully understood. Also, there is no protocol to identify and prevent the sludge biomass from metallic stress in fully functional sewage treatment plants (STPs). This study investigates performance, metabolic activity, morphology, and settling characteristics of the sludge biomass under different Co(II) stress conditions. The extent of recovery in biomass, when the supply of Co(II) metal ion was discontinued in the inlet stream, was explored. The study also proposed a protocol based on simple settling characteristics of sludge biomass to get an early indication of metal infiltration to prevent potential damage to the biomass morphology. Four sequencing batch reactors (SBRs) with Co(II) ion concentrations of 0 (designated as RCo0), 5 (RCo5), 25 (RCo25), and 75 mg/L (RCo75) in the feed were operated with a cycle time of 12 h. Reactors were operated for 35 days with Co(II) in the feed (termed as stressed phase operation) followed by 24 days of operation without Co(II) in the feed (termed as recovery phase operation). Results show that COD removal in reactor RCo75 reduced to 48% on the 10th day of stressed phase operation, showing a lag in COD removal due to metallic stress. The activity of biomass in reactors RCo5, RCo25, and RCo75 was reduced by 39%, 45%, and 49%, respectively, in the stressed phase compared to the biomass in control reactor. Recovery in COD removal efficiency and specific biomass activity were observed in all the reactors after the removal of metallic stress. The settleability of sludge biomass in reactors RCo25 and RCo75 was significantly affected. Transformation in the shape of flocs in reactor RCo25 and RCo75 biomasses revealed the prolonged effect of metallic stress, which was observed to be irreversible even during the recovery phase operation.

  相似文献   

14.

This research analyses energy intensity of transport service sectors in Vietnam and its changing trend in the past years using IO tables and LMDI decomposition method. Energy consumption of 38 economic sectors in 2007, 2012 and 2018 is determined, of which transport service sectors were the second largest energy consumer (17.71 Mtoe), occupied 18.5% of total energy consumed in Vietnamese economy in 2018. In terms of energy intensity, a rising trend is seen in all transport service sectors, of which four most important transport services including bus and other road passenger transport, freight transport service by road and pipeline, waterway shipping freight and aviation passenger reached 0.62 kgoe/USD, 0.72 kgoe/USD, 0.60 kgoe/USD and 0.62 kgoe/USD in 2018, respectively. The ineffective structural change and ineffective energy intensity change are the reasons behind the upward trend in these sectors. Using Leontief inverse, the study also unveils how demanded on transport services by other economic sectors in terms of energy and how much energy embodied in all inputs of any economic sector. In order to keep the energy intensity stable and gradually decreasing, the recommendations are focused on effectiveness in structural changes and improvements in energy efficiency.

  相似文献   

15.

The purpose of this study is to investigate the enhancement of polycaprolactone (PCL) on total nitrogen (TN) removal of coal pyrolysis wastewater (CPW) with low COD to nitrogen ratio by partial nitrification-denitrification bioprocess (PNDB) in one single reactor. With the innovative combination of PCL and PNDB, the TN removal efficiency in the experimental reactor (signed as R1) was 10.21% higher than control reactor (R2). Nitrite accumulation percentage (NAP) in R1 was 82.02%, which was 17.49% higher than R2 at the dissolved oxygen (DO) concentration of 0.9–1.5 mg/L, for the reason that the extra DO was consumed by PCL biodegradation at the aerobic period. Gel permeation chromatography (GPC) results demonstrated that organics with the molecular weight of 185 Da, which could serve as additional carbon sources for denitrifiers, were generated during the PCL hydrolysis process at the anoxic period. PCL was hydrolyzed by extracellular enzymes with the break of the ester bond which was confirmed by FT-IR spectrometer. Microbial community analysis revealed that Ferruginibacter was the dominant hydrolysis bacteria in R1. Nitrosomonas were the main ammonium-oxidizing bacteria (AOB) and Hyphomicrobium were the denitrifiers in this study.

  相似文献   

16.
调理剂和通风方式对污泥生物干化效果的影响   总被引:6,自引:2,他引:4  
采用了自主设计的污泥生物干化实验室模拟系统,研究了调理剂、物料配比和通风方式等实验条件对脱水污泥生物干化的影响效果。研究结果表明,与锯末相比,秸秆有利于反应物料温度的上升,含水率下降程度更大;利用秸秆调节污泥初始含水率在60%和65%的实验条件下时,物料的平均含水率分别下降了7%和6%,当初始含水率65%时,生物堆体的温度和含水率没有明显的变化;与连续通风相比较,间歇通风的实验条件有利于生物堆体的温度的升高和干化效果;在该实验中,最佳的生物干化条件是以秸秆为调理剂,初始含水率调至65%以下,以间歇方式进行通风。  相似文献   

17.

High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.

  相似文献   

18.
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

19.

Equilibrium sorption studies of anionic species of arsenite, As(III) ions and arsenate As(V) ions onto two biosorbents, namely, chitosan and nanochitosan, have been investigated and compared. The results and trends in the sorption behavior are novel, and we have observed during the sorption process of the As(III) and As(V) on chitosan, a slow process of desorption occurred after an initial maximum adsorption capacity was achieved, before reaching a final but lower equilibrium adsorption capacity. The same desorption trend, however, is not observed on nanochitosan. The gradual desorption of As(III) and As(V) in the equilibrium sorption on chitosan is attributed to the different fractions of the dissociated forms of arsenic on the adsorbent surface and in solution and the extent of protonation of chitosan with the changing of solution pH during sorption. The change of solution pH during the sorption of arsenite ions on chitosan was also influenced by the interaction between the buffering effect of the arsenite species in the aqueous medium and the physical properties of chitosan. The final equilibrium adsorption capacity of chitosan for As(III) and As(V) was found to be around 500 and 8000 μg/g, respectively, whereas the capacities on nanochitosan are 6100 and 13,000 μg/g, respectively.

  相似文献   

20.
Eom H  Chung K  Kim I  Han JI 《Chemosphere》2011,85(4):672-676
In an effort to improve the efficiency and sustainability of microbial fuel cell (MFC) technology, a novel MFC reactor, the M2FC, was constructed by combining a ferric-based MFC with a ferrous-based fuel cell (FC). In this M2FC reactor, ferric ion, the catholyte in the MFC component, is regenerated by the FC system with the generation of additional electricity. When the MFC component was operated separately, the electricity generation was maintained for only 98 h due to the depletion of ferric ion in the catholyte. In combination with the fuel cell, however, the production of power was sustained because ferric ion was continually replenished from ferrous ion in the FC component. Moreover, the regeneration process of ferric ion by the FC produced additional energy. The M2FC reactor yielded a power density of up to 2 W m−2 (or time-averaged value of approximately 650 mW m−2), density up to 20 times (or approximately six times based on time-averaged value) higher than the corresponding MFC system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号