首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basic physical-chemical properties of five bromine and chlorine containing mixed halogenated dimethyl bipyrroles (HDBPs) were determined using established methods. Subcooled liquid vapour pressures (P(o)(L,25)), aqueous solubilities (S(w,25)), and octanol/water partition coefficients (K(ow)) were determined using the gas chromatography-retention time, generator column, and slow-stirring methods, respectively. Henry's Law constants (H25) were estimated using experimentally-derived P(o)(L) and S(w,25) data. Values of all four properties were generally similar to those reported for other polyhalogenated aromatic compounds [P(o)(L,25) = (7.55-191) x 10(-6) Pa; S(w,25) = (1.0-1.9) x 10(-5) g/l; log K(ow) = 6.4-6.7; H25 = 0.0020-0.14 Pa m3/mol]. The effect of replacing a chlorine with a bromine atom significantly decreased P(o)(L,25) (log P(o)(L,25) = -0.4197 (# bromine atoms) - 2.643, p<0.01) and H25 (log H25 = -0.508 (# bromine atoms) + 0.394, p<0.02). There were no significant effects of bromine/chlorine substitution on S(w,25) or K(ow). A simple Level I equilibrium partitioning model predicted the environmental behaviour of HDBPs to be similar to a tetrabrominated diphenyl ether. Only slight differences in behaviour amongst HDBP congeners were predicted since substitution of a bromine for a chlorine (Cl/Br substitution) atom had less effect than H/Cl or H/Br substitution on P(o)(L,25), S(w,25), H25, and K(ow).  相似文献   

2.
Environmental fate determining physical properties including their temperature dependence for five nitro musks and for seven polycyclic musks were estimated. The properties evaluated were vapor pressure in a solid and liquid state (PS and PL), solubility in water (S), Henry's law coefficient (H = PL/S) and log octanol-water partition coefficient (log KOW). Gas chromatography for starting values of vapor pressure estimation and HPLC experiments at 5-20 degrees C for comparison of the theoretical versus experimental solubilities in water were performed. The values of temperature (T) dependence coefficients (Ai and Bi) in equations: log (Property)i = Ai - Bi/T were determined. Values of properties were compared with literature-based data, and an example of their use in environmental hazard estimation by fate modeling was given.  相似文献   

3.
Wang YH  Wong PK 《Chemosphere》2003,50(4):499-505
Correlation relationships between physico-chemical properties including vapor pressures (P), water solubilities (S), Henry's law constants (H(c)), n-octanol-water partition coefficients (K(ow)), sediment-water partition coefficient (K(pw)) and biotic lipid-water partition coefficient (K(bw), bioconcentration factor) of polychlorinated-dibenzofurans (PCDFs) and their gas chromatographic retention indices (GC-RIs) were established. A model equation between GC-RIs (= RI) and these physico-chemical properties (K) of PCDFs was in a form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.94, except H(c). These equations were derived from six experimental data (five experimental data for log K(bw)) in each physico-chemical properties of PCDFs reported previously. The values of log P, log S, log H(c), log K(ow), log K(pw) and log K(bw) of PCDFs predicted by these equations based on their GC-RIs in the present study derviated from those calculated by the solubility parameters for fate analysis method in a previous study by 0.49, 0.32, 0.11, 0.34, 0.14 and 0.22 log units, respectively.  相似文献   

4.
Guo XX  Brimblecombe P 《Chemosphere》2007,68(3):436-444
Phenols are widely present in the atmosphere and nitration probably in the aerosol phase leads to nitrophenols. Nitration by nitric acid in sulfuric acid can be rapid, but little is known of the process under atmospheric conditions. The Henry's law constants K(H)(dagger) of phenol and 2-, 3- and 4-nitrophenol were all measured by a bubble stripping method as: 2820mol kg(-1) atm(-1) (at 298K), 147mol kg(-1) atm(-1) (at 298K), 1.6x10(4)mol kg(-1)atm(-1) (at 308K) and 2.1x10(4)mol kg(-1) atm(-1) (at 308K), respectively. The Henry's law constant of phenol in sulfuric acid systems is lower by more than a factor of two at 1020mol kg(-1) atm(-1) (at 298K) in 40wt% sulfuric acid, which is in line with salting-out of oxygen-containing aromatic compounds in water-sulfuric acid systems. The Henry's law constants of 2- and 4-nitrophenol behave differently and are almost independent of sulfuric acid concentration. The variation of K(H)(dagger) with temperature (T) described in terms of -dln(K(H)(dagger))/d(1/T) does not to vary with sulfuric acid concentration, suggesting enthalpy of dissolution for phenol is independent of sulfuric acid. The series of Henry's law constants measured here can describe the equilibrium situation for phenols in careful determinations of phase partitioning in the atmosphere.  相似文献   

5.
This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P(L)(0)) and the octanol-air partition coefficient (K(OA)) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K(P)) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O(3) and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol.  相似文献   

6.
Foliar emission rates of plant-generated volatile monoterpenes depend on monoterpene partitioning between air, aqueous and lipid-phases in the leaves. While Henry's law constants (H pc, equilibrium gas/water partition coefficient) and octanol/water partition coefficients (K OW) for pure water have been previously used to simulate monoterpene emissions from the leaves, aqueous phase in plants is a complex solution of electrolytes and neutral osmotica. We studied the effects of dissociated compounds KCl and glycine and sugars glucose, sorbitol and sucrose with concentrations between 0 and 1M on H pc and K OW values for limonene and linalool. Linalool with ca. 1500-fold lower H(pc) (2.62 Pa m(3)mol(-1) for pure water at 30 degrees C) and ca. 30-fold lower K OW (955 mol mol(-1) for pure water at 25 degrees C) is the more hydrophilic compound of the two monoterpenes. H pc of both monoterpenes increased with increasing concentration of both ionic compounds and sorbitol, but decreased with increasing glucose and sucrose concentrations. The salting-out coefficients for H pc (kH) were ca. an order of magnitude larger for more hydrophilic compound linalool than for more hydrophobic limonene. For linalool, co-solutes modified H pc by 30-50% at the highest concentration (1M) tested. The effect of temperature on the salting-out coefficient of KCl was minor. As with H pc, K OW increased with increasing the concentration of KCl, glycine and sorbitol, and decreased with increasing glucose and sucrose concentrations. For limonene, co-solutes modified K OW by 20-50% at the highest concentration used. For linalool, the corresponding range was 10-35%. Salting-out coefficients for H pc and K OW were correlated, but the lipid-solubility was more strongly affected than aqueous solubility in the case of limonene. Overall, these data demonstrate physiologically important effects of co-solutes on H pc and K OW for hydrophilic monoterpenes and on K OW for hydrophobic monoterpenes that should be included in current emission models.  相似文献   

7.
Kurz J  Ballschmiter K 《Chemosphere》1999,38(3):573-586
Modelling the environmental fate of persistent organic pollutants like polychlorinated diphenyl ethers (PCDE) requires the knowledge of a number of fundamental physico-chemical properties of these compounds. We report here the physico-chemical properties of 106 PCDEs, which are over 50% of all possible congeners. Vapour pressures P(OL), water solubilities S(H2O), and n-octanol/water partition coefficients K(OW) were determined with chromatographic methods. With these experimental data the Henry's law constants H, gas/water K(GW) and gas/n-octanol K(GO) partition coefficients were calculated. Vapour pressures and water solubilities and n-octanol/water partition coefficients of the PCDEs are close to those of similar groups of organochlorine compounds like polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs). A similar environmental fate can be predicted and was partially already been observed.  相似文献   

8.
9.
10.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

11.
Vapor-phase transport of organic pollutants is one of the important pathways in the distribution and attenuation of volatile organic compounds in the vadose zone. In this study, the impact of vapor-phase partitioning and of the physical-chemical properties of organic pollutants on vapor-phase transport was assessed. An experimentally derived relationship to predict vapor sorption for a variety of soil types under varying soil moisture conditions was incorporated into the two-dimensional finite-element model, Vocwaste. The revised model was then used to simulate the transport of volatile organics. Vapor-phase partitioning in the model accounted for vapor uptake by sorption onto moist mineral surfaces as well as sorption at the liquid-solid interface and dissolution into soil water. Under dry conditions, vapor-phase sorption of volatile organic pollutants was shown to have a retarding effect on transport of organic vapors. However, for shallow, contaminated soils, volatilization was controlled by vapor diffusion, even under dry conditions where vapor-phase sorption was high. The influence of Henry's law constant and of the aqueous-phase (solid-liquid) partition coefficient for volatile organic pollutants was considered in the simulations. Volatilization of organic vapors was shown to be favored for contaminants with high Henry's law constants and low aqueous-phase partitioning coefficients. Because of the interdependence of these two physical-chemical properties, individual properties of the contaminant should not be considered in isolation in the evaluation of vapor transport.  相似文献   

12.
Warneck P 《Chemosphere》2007,69(3):347-361
Experimentally determined Henry's law coefficients of 18 chlorinated C(1) and C(2) hydrocarbons reported in the literature as a function of temperature and at the single temperatures 20 and 25 degrees C were compiled and converted to common units of concentration and pressure: K(H) (moldm(-3)atm(-1)). The individual values are plotted in the ln(K(H)) versus reciprocal absolute temperature coordinate frame, data not in harmony with others were deleted, and the resulting data sets treated by linear regression analysis to derive averaged parameters in the general equation ln(K(H))=A+B/T. The quality of the evaluation was further checked by comparison of values calculated from the resulting parameter values with averages obtained from the direct measurements at 20 degrees C. Good agreement was observed for 15 compounds, larger discrepancies arise only for chloroethane, 1,2-dichloroethane and hexachloroethane. In all three cases the data base is poor and needs to be improved. The results are used to derive heats of solution for the C(1) and C(2) chlorinated hydrocarbons in water, Gibbs energies of solution and standard Henry's law coefficients at 298.15K. Henry's law coefficients calculated from the ratio of solubility of the compound in water and the saturation vapor pressure of the pure compound reported by Sangster [Sangster, J.M., 2003. Henry's law constants for compounds stable in water. In: Fogg, P.G.T., Sangster, J.M. (Eds.), Chemicals in the Atmosphere - Solubility, Sources and Reactivity. Wiley, Chichester, West Sussex, England, pp. 255-397] provide good agreement with the experimental data in eight out of eleven cases treated.  相似文献   

13.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

14.
Reza J  Trejo A 《Chemosphere》2004,56(6):537-547
The water solubility of 9,10-dihydroanthracene was experimentally determined between 278.12 and 313.17 K. Determinations were carried out by an experimental procedure developed in our laboratory, which is a modification of the dynamic coupled column liquid chromatographic technique. The uncertainty of the experimental determinations ranged from +/- 0.50% to +/- 3.10%. These data, as well as the water solubility data of other five polycyclic aromatic hydrocarbons (PAHs) previously studied, were used to calculate the temperature dependence of the infinite dilution activity coefficient of 9,10-dihydroanthracene, anthracene, pyrene, 9,10-dihydrophenanthrene, m-terphenyl, and guaiazulene in water. Molar excess enthalpies and entropies at infinite dilution, at 298.15 K, were also derived. The temperature dependence of the infinite dilution activity coefficients was used, together with literature values of the vapor pressures of supercooled liquid PAHs (p(B)(sc)), to estimate their Henry's law constants (HLC). Only HLC for anthracene, pyrene, and 9,10-dihydrophenanthrene were calculated, since no p(B)(sc) data were available in the literature for 9,10-dihydroanthracene, m-terphenyl, and guaiazulene. From the observed temperature dependence of the Henry's law constants the enthalpy and entropy of the phase change from the dissolved phase to the gas phase were also derived for anthracene, pyrene, and 9,10-dihydrophenanthrene.  相似文献   

15.
16.
Polycyclic aromatic hydrocarbons (PAH) were measured in air samples at a remote air monitoring site established in the Yukon Territory, Canada as part of a global project (International Polar Year; IPY) to study the potential for atmospheric long-range transport of anthropogenic pollutants to the Arctic. Gas- and particle-phase PAH were collected in polyurethane foam plugs and on glass fibre filters respectively from August 2007 to October 2009. PAH concentrations were found to be highest in the winter months and lowest in summer. The gas/particle partitioning coefficients of 3–5 ringed PAH were computed and seasonal averages were compared. In the summer time, lower molecular mass PAH exhibited relatively higher partitioning into the particle-phase. This particle-phase partitioning led to the shallowest slopes being recorded during summer for the log–log correlation plots between the PAH partition coefficients and their sub-cooled vapour pressures. Air mass back trajectories suggest that local impacts may be more important during the summer time which is marked by increased camping activities at camping sites in the proximity of the sampling station. In conclusion, both summer and wintertime variations in PAH concentrations and gas/particle partitioning are considered to be source- and phototransformation-dependent rather than dependent on temperature-driven shifts in equilibrium partitioning.  相似文献   

17.
Moser GA  McLachlan MS 《Chemosphere》2002,46(3):449-457
The dietary absorption of persistent lipophilic organic pollutants (PLOPs) in humans is believed to occur via partitioning of the chemical between the lumen and the wall of the digestive tract. As such, the partitioning properties of the lumen contents are a key factor governing absorption. In this study, the partitioning properties of faeces were measured for 11 polychlorinated biphenyls and hexachlorobenzene (HCB). Four volunteers participated in the study, each of them providing faeces from a normal diet and a vegetarian diet. The faeces/gas equilibrium partition coefficient K(FG) varied by over three orders of magnitude between the different compounds. A linear relationship between log K(FG) and log KOA, the octanol/air partition coefficient, was observed. The slope of the relationship was > 1, indicating that the solvent properties of faeces were less polar than those of octanol. For a given compound, KFG varied up to a factor of 2.8 between the individuals on a normal diet. The influence of the vegetarian diet on K(FG) was negligible for the two volunteers who simply deleted fish and animal products from their normal diet, but K(FG) increased on average by a factor of 2 in the two individuals who increased their consumption of less readily digestible whole grains and vegetables in their vegetarian diet. On the basis of K(FG), the fugacities in the faeces were calculated. They were found to be much lower than the fugacities in blood. It is hypothesised that this is due to a temporary decrease in the fugacity in the wall of the jejunum caused by absorption of dietary lipids that results in equilibration between the lumen contents and the wall of the digestive tract at a fugacity below that present in the blood and the rest of the body.  相似文献   

18.
Müller B  Heal MR 《Chemosphere》2001,45(3):309-314
Although 2-nitrophenol has been identified as an important environmental chemical there is scarcity in the literature regarding the temperature dependence of its Henry's law coefficient, H. Here a bubble purge method was used to measure H for 2-nitrophenol over the temperature range 278-303 K. A novel approach in the data treatment allowed correction of the data for non-equilibrium partitioning in the apparatus to obtain the true equilibrium H value. The experimentally derived temperature-dependent expression for H of 2-nitrophenol is lnH (M atm(-1)) = (6290/T (K)) - 16.6. The standard enthalpy and entropy of gas-to-liquid transfer for 2-nitrophenol in aqueous solution are -52.3 +/- 8.1 kJ mol(-1) and -138 +/- 28 J mol(-1) K(-1), respectively. (Errors are 95% confidence intervals.)  相似文献   

19.
Air concentrations of polychlorinated biphenyls (PCBs) in both gas and particle phases were measured in an urban site (BUTAL-Merinos) of the city of Bursa, Turkey between August 2004 and May 2005. The mean of total (particle+gas) PCB concentrations was about 491.8+/-189.4pg/m(3). The main contributors for PCBs in the sampling site were the local sources and long-range atmospheric transport supported by back trajectory analysis. Lower molecular weight PCB congeners generally dominated in the samples. The particle phase of the measured PCBs accounted for 15% of the total PCB concentrations. Gas/particle distribution was investigated using different approaches such as log K(P)-log P(L)(o), log K(P)-log K(OA) and the Junge-Pankow model. Regression analysis among log K(P), log P(L)(o) and log K(OA) exhibited significant correlation at p<0.05. Correlation between PCB homologs and meteorological parameters was formed to investigate the possible relationships.  相似文献   

20.
Thomas JE  Ou LT  Allen LH  Vu JC  Dickson DW 《Chemosphere》2006,62(6):980-988
Methyl bromide, a pre-emergent soil fumigant, is scheduled to be phased out in the US by 2005, with exceptions for critical use. Comparison of some of the physical constants related to distribution and retention for methyl bromide (MBr) to other fumigants yields a useful quantification of possible alternatives. In this study, the atmospheric and subsurface dissipation of methyl bromide as well as (Z)- and (E)-1,3-dichloropropene (1,3-D) isomers in Telone II were examined. The Henry's law constants of the three chemicals at soil temperature and their mass transfer coefficients for movement through an agricultural mulch of UV-resistant, high-density polyethylene (PE) were evaluated using field data. At the soil temperature of 16.4 degrees C, calculated Henry's law constant gave a fumigant ranking of MBr (0.21)>(Z)-1,3-D (0.041)>(E)-1,3-D (0.027). Since rapid subsurface distribution of a fumigant is highly dependent on the amount in the gas phase, the greater value for Henry's law constant implies faster distribution throughout the soil. After distribution through the soil, retention of the fumigant becomes imperative. Calculation of the fumigant's mass transfer coefficients through PE from field data gave a ranking of the three chemicals: MBr (1.08 cm/h)<(E)-1,3-D (3.25 cm/h)<(Z)-1,3-D (4.13 cm/h). With mass transfer coefficients of this magnitude, it was concluded that PE film was an inadequate barrier for retaining these fumigants in an agricultural setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号