首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaves of the deciduous tree species, horse chestnut (Aesculus hippocastanum L.) and Turkish hazel (Corylus colurna L.) were used as accumulative biomonitors of trace metal pollution in the urban area of Belgrade. Using differential pulse anodic stripping voltametry, trace metal concentrations (Pb, Cu, Zn, Cd) were determined at the single leaf level (ten leaves per species, per month), during two successive years with markedly different atmospheric level of trace metals. Increased trace metal concentrations in the leaves of A. hippocastanum reflected elevated atmospheric trace metal pollution, whereas C. colurna L. did not respond accordingly. The contents of Pb and Zn in soil over the same period also followed this trend. Anatomical analyses, in young as well as in old leaves of both species, indicated typical foliar injuries of plants exposed to stressful air conditions. Water relations that correspond to leaf age may have contributed to the considerable trace metal accumulation in leaves.  相似文献   

2.
A comparative study of the physico-chemical properties of soil, leafmetal content and foliar surface traits in Lagerstroemia parviflora(L.) Roxb. plants, growing in an iron-rich mineralized and anon-mineralized area was carried out. Metal accumulation wasmaximum in summer; in the peak growing season, it declined duringthe rainy season but picked up again in winter. In leaves sampled froma mineralized region, epidermal cells were much smaller in size buthigher in number per unit area. Changes in the number and size of glandular papillae were also observed. Characteristic non-glandular,elongate trichomes with acute tip were also recorded in mineralizedpopulations. Scanning electron microscopic examination of the foliarsurface configuration revealed distortions in epicuticular wax structuresand wider cuticular striations with typically parallel arrangement inthese populations.The present study shows that high Fe-accumulation in leaves of L.parviflora during the exponential growth phase as well as changes inthe epicuticular structures may be indicators of metal stress in the populations of the mineralized area.  相似文献   

3.
PM2.5 aerosol samples were collected at Gosan in Jeju Island during six intensive measurement periods between November 2001 and August 2003. In order to investigate the chemical composition of fine particles, major ion components, trace elements, and elemental and organic carbon were analyzed. Quite different seasonal characteristic in the chemical composition of fine particles was observed. The concentration of most secondary aerosol components showed a summer minimum and a winter maximum with higher correlation between them at Gosan. This fact clearly reveals the possibility of long-range transport of such pollutants in winter. On the other hand, OC and EC had the highest concentration and good correlation with ion components, such as K+, Ca2+ in fall. It means that biomass burning could significantly influence the ambient fine carbonaceous particulate in fall, which was primarily long-range transported.  相似文献   

4.
This study was conducted in the urban environment of Varanasi, India, to evaluate the plant responses to urban air pollution. Twenty sites were selected in four different zones of the city. At each site, seven woody perennials of same age classes were selected. Out of the four zones (I, II, III and IV), zone IV was used as a reference (control) zone as it received the minimum pollution input. Plant species growing in polluted and control areas were compared with respect to foliar dust load, per cent leaf area injury, leaf area, specific leaf weight and chlorophyll, ascorbic acid, SO 4 2– S and total N concentration in the leaves. Results indicated that the air pollution level in Varanasi causes leaf damage, reduces leaf area, specific leaf weight and chlorophyll, ascorbic acid and total N concentrations in the leaves. Sulphur concentration in leaves increased with increasing level of SO2 in the ambient air. The magnitude of such changes was maximum at the zone receiving maximum pollution load. Carissa carandas was found to be the most sensitive species and Bougainvillea spectabilis, the least. The study shows that the urban air pollution level in Varanasi is detrimental for the growth of plants involved in this study.  相似文献   

5.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

6.
The present experiment was done to evaluate the impact of ambient air pollution on carrot (Dacus carotavar. Pusa Kesar) plants using open top chambers (OTCs) ventilated with ambient (NFCs) or charcoal filtered air (FCs) at a suburban site of Varanasi, India. Various morphological, physiological and biochemical characteristics of the plants were studied at different growth stages. Air monitoring data clearly showed high concentrations of SO2, NO2and O3in the ambient air of study site. SO2and NO2concentrations were higher during early growth stages of carrot, whereas O3concentration was highest during later growth stages. Filtration of air has caused significant reductions in all the three pollutant concentrations in FCs as compared to NFCs.Plants growing in FCs showed significantly higher photosynthetic rate, stomatal conductance, water use efficiency and variable fluorescence as compared to plants growing in NFCs. Protein content also showed a similar pattern, however, lipid peroxidation, ascorbic acid content and peroxidase activity were higher in plants growing in NFCs as compared to FCs. Shoot length, number of leaves per plant, leaf area and root and shoot weight increased significantly upon filtration of ambient air. Total nitrogen decreased significantly in root, but increased significantly in shoot of plants grown in NFCs. Total P, Mg, Ca and K contents decreased significantly in plants grown in NFCs as compared to FCs. The individual pollutant concentrations were below threshold for plant injury, but the combined effect of all the three seems to act synergistically in causing greater adverse impact on dry weight and physiology of carrot plants. The study clearly indicates that air pollutants are high enough in the ambient air to cause significant unfavorable impact on carrot plants. The work further supports the usefulness of OTCs for assessing air pollution damage under field conditions in developing countries.  相似文献   

7.
The evaluation of certain vascular plants that grow in the city of Madrid as biomonitors of SO2 air pollution in urban environments has been carried out. Total concentration of sulphur in leaves of the chosen higher plants as well as other parameters in close relation to this contaminant (visible injury symptoms, chlorophyll a- and b-content and peroxidase activity) have been determined in order to study the spatial distribution and temporal changes in SO2 deposition. Results obtained show that coniferous species such as Pinus pinea, were more sensitive to SO2 atmospheric concentration than leafy species as Quercux ilex subspecies ballota and, in the same way, bush species, such asPyracantha coccinea and Nerium oleander, were more sensitive than wooded species, such as Cedrus deodaraandPinus pinea, respectively. There is a higher accumulation of sulphur in vegetable species located near highways and dense traffic incidence roads and near areas with high density of population. The minimum values for accumulation of SO2 were registered in winter and spring seasons (from January to April) due to the vegetative stop; while maximum values are obtained during the summer season (from June to September), due to the stoma opening. The highest increments in sulphur concentration, calculated as the difference between two consecutive months, are obtained in May and June for all considered species except forCedrus deodara and Pyracantha coccinea, both species have few seasonal changes during the whole year. Some species are more sensitive to natural washing than others, showing a decrease in sulphur concentration after rainfall periods.  相似文献   

8.
Sulphur dioxide (SO2) is one of the main atmospheric pollutants in central Taiwan. This article analyses the SO2 concentration seasonal variations and spatial distribution using data obtained from ten air quality monitoring stations and the Taiwan Weather Bureau. It reveals that SO2 concentration is high in winter and low in summer and that high concentration centers are located south of the Taichung coal-fired power plant, the main source of SO2 emissions in the region.The location of high concentration centers changeswith different prevailing winds. SO2 variations due towind direction are not unique. During short periods,when meteorological conditions are constant, variationin the pollution sources cause variations in thespatial distribution. This has been deduced byappreciation of Intervention analysis to time seriesof hourly data.  相似文献   

9.
The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.  相似文献   

10.
The relationships between fluctuations in climatic conditions,forest productivity and elemental cycling were studied from 1994 to 1997 in a headwater catchment of the southern Laurentians dominated by sugar maple (Acer saccharumMarsh.) growing on podzolic soils. Annual budgets show that H+, K, and NO3 were retained in the watershed whileCa, Mg and Na were lost. The magnitude of the net annual budget for Ca, Mg and Na was correlated to annual variationsin precipitation with the absolute budget value decreasing during dry years. Stemwood (r2 = 0.85) and total tree biomass production (r2 = 0.99) were correlated with mean annual temperature but fine roots and leaf litter werenot. During the growing season, the pH of the organic horizons(FH) decreased as the volumetric water content of soildecreased. A positive association was also found between airtemperature and H2O-soluble (r2 = 0.88) and PO4-extractable (r2 = 0.99) SO4 in the upper B horizon. On a multi-year scale, we suspect that the decreasein the storage of inorganic SO4 in the soil results from the cumulative effects of annual variations in climatic conditions superimposed on the long-term decrease in SO4deposition from the atmosphere. These soil changes were reflected by a decline in SO4, Ca and Mg concentrationsin the stream. The generalisation of the observed short-term patterns to longer time scales must be approached with caution. Yet, our results indicate that the associations between climatic variations and the biogeochemistry of the ecosystem occur at different spatial and temporal scales and integrate abroad range of chemical components and ecosystem compartments. This reflects the inherent complexity of natural systems and offers a vast palette of indicators of the response of terrestrial ecosystems to variations in the intensity of environmental factors such as climatic conditions.  相似文献   

11.
The concentrations of ozone, NO2 and SO2, measured with a DOAS system 70 m above ground level in the city of Graz were compared with data from conventional ground stations. The dependence of vertical trace-gas distributions on stability categories and time of the day or year was investigated. Concerning the maximum ozone concentrations in summer, the DOAS data are representative for the ground-level situation. In average, the concentrations 70 m above ground are more than twice the ground-level concentrations. It has been shown that beside the reaction with NO, dry deposition is an important sink for ozone near the surface. The DOAS NO2-concentrations are representative for ground-level conditions in summer, except for the morning maximum of NO2. In winter the DOAS NO2-concentrations amount for 73% of the ground level values in average. Concerning the slow reacting trace gas SO2, the DOAS data are always representative for the ground-level conditions.  相似文献   

12.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   

13.
The concentrations of criteria air pollutants such as CO, NOx (NO + NO2), SO2 and PM were measured in the period of May 2001 and April 2003 in the city of Bursa, Turkey. The average concentrations for this period were 1115±1600 μg/m3, 29±50 μg/m3, 51±24 μg/m3, 79±65 μg/m3, 40±35 μg/m3, 98±220 μg/m3, for CO, NO, NO2, NOx, SO2 and PM, respectively. Temporal changes in concentrations were analyzed using meteorological factors. Correlations among pollutant concentrations and meteorological parameters showed weak relations nearly in all data. Lower concentrations were observed in the summer months while higher concentrations were measured in the winter months. The increase in winter concentrations was probably due to residential heating. Pollutants were associated with each other in order to have information about their origin. NOx/SO2 ratio was also examined to bring out the source origin contributing on air pollution (i.e., traffic or stationary).  相似文献   

14.
2021年对济南市大气PM2.5中17种2,3,7,8氯取代二(口恶)英(PCDD/Fs)污染现状进行监测。对其异构体分布、指示性单体、季节变化规律等特征及其与常规污染物相关性进行了分析。结果表明:大气PM2.5中PCDD/Fs浓度范围和年平均值分别为0.157~1.595 pg/m3和0.785 pg/m3,而毒性当量(以I-TEQ计)范围和年平均值分别为0.009~0.116 pg TEQ/m3和0.052 pg TEQ/m3。PCDD/Fs浓度与毒性当量季节变化特征显著,均呈现出冬季>春季>秋季>夏季的情况,可能由季节性排放源和气象条件不同导致。不同季节PCDD/Fs异构体分布模式一致,主要由高氯代(1,2,3,4,6,7,8-HpCDF、OCDD、OCDF和1,2,3,4,6,7,8-HpCDD)单体组成;而对毒性当量贡献最大的单体是2,3,4,7,8-PeCDF,其与总毒性当量具有较好的相关性。同时,PCDD/Fs浓度与SO2、NO2、PM2.5等大气常规污染物呈显著正相关。这表明,大气PM2.5中PCDD/Fs与常规污染物的生成和排放密切相关。  相似文献   

15.
Considering the mounting evidences of the effects of air pollution on health, the present study was undertaken to assess the ambient air quality status in the fast growing urban centres of Haryana state, India. The samples were collected for total suspended particulate matter (TSPM), respirable suspended particulate matter (PM10), sulfur dioxide (SO2), and oxides of nitrogen (NO2) during different seasons from 8 districts of Haryana during January, 1999 to September, 2000. The four types of sampling sites with different anthropogenic activities i.e. residential, sensitive, commercial and industrial were identified in each city. The ambient air concentration of TSPM and PM10 observed was well above the prescribed standards at almost all the sites. The average ambient air concentrations of SO2 and NO2 were found below the permissible limits at all the centres. Comparatively higher concentration of SO2 was observed during winter seasons, which seems to be related with the enhanced combustion of fuel for space heating and relatively stable atmospheric conditions. Air Quality Index (AQI) prepared for these cities shows that residential, sensitive and commercial areas were moderately to severely polluted which is a cause of concern for the residents of these cities. The high levels of TSPM and SO2 especially in winter are of major health concern because of their synergistic action. The data from Hisar city reveals a significant increase in the total number of hospital visits/admissions of the patients with acute respiratory diseases during winter season when the level of air pollutants was high.  相似文献   

16.
2001年~2008年及奥运会期间天津市大气污染特征分析   总被引:1,自引:1,他引:0  
根据天津市大气质量监测数据,对2001年~2008年及奥运会期间天津市大气污染特征和主要大气污染物的变化规律进行了分析。结果表明,2001年~2008年天津市的PM10、SO2和NO2污染总体呈下降趋势,但质量浓度仍相对较高。2008年8月奥运会期间天津市PM10和SO2质量浓度达到国家空气质量二级标准,NO2质量浓度达到国家空气质量一级标准,空气质量良好。天津市PM10污染相对稳定,SO2和NO2的污染分布呈现明显的季节性,时间上表现为冬强夏弱。气象条件对污染物浓度影响明显,沙尘、大雾等天气可使污染物浓度急剧升高。  相似文献   

17.
为了解台州市市区大气降水化学成分组成特征及变化规律,对2010—2019年台州市市区降水监测数据进行了统计分析。结果表明:2010—2019年降水样品pH为4.20~4.84夏高冬低,强酸性降水频率下降显著,电导率平均值为3.16 mS/cm。SO42-和NO3-是降水中最主要的阴离子,NH4+和Ca2+是降水中最主要的阳离子。Ca2+浓度在2018年开始有所抬升,SO42-和NO3-浓度整体呈波动下降趋势。SO42-与NO3-浓度比均值为1.50,呈下降趋势,同大气中SO2与NO2的质量浓度比变化趋势基本一致。SO42-和NO3<...  相似文献   

18.
为研究北京地区冬季PM_(2.5)载带的水溶性无机离子组分污染特征,2013年1月在中国环境科学研究院内采用在线离子色谱(URG-9000B,AIM-IC)对PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Na~+、K~+、Mg~(2+)、Ca~(2+))进行监测与分析。结果表明,采样期间总水溶性无机离子(TWSI)浓度为61.0μg/m~3,其中二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)占比达72.3%,在PM_(2.5)中占比为40.29%,表明北京市PM_(2.5)二次污染严重。重污染天[NO_3~-]/[SO_4~(2-)]表明,固定源污染较移动源更为显著。三元相图表明,在空气质量为优的情况下,NH_4~+(在SNA中占比为30.3%~65.5%,下同)主要以NH_4NO_3的形式存在,较少比例以(NH_4)_2SO_4存在;严重污染时,NH_4~+(47.3%~77.9%)主要以(NH_4)_2SO_4形式存在,其次以NH_4NO_3的形式存在,其余的NH_4~+以NH_4Cl的形式存在。[NO_3~-]/[SO_4~(2-)]日变化表明,早、晚机动车高峰影响北京重污染发生。  相似文献   

19.
This study aims to estimate the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO2 emissions have increased from 324 to 499 Mt/year; SO2 emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO2 emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO2 and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO2 emissions as 0.58 kg/kWh, SO2 emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO2 emissions as 1.5 kg/kWh, SO2 emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants.  相似文献   

20.
Seasonal variation of the concentrations of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured by ICP-AES in the water and sediment from the Saricay Stream, Geyik Dam and Ortakoy Well in the same basin. Comparisons between trace metal concentrations in water and sediment in three sources (Stream, Dam and Well) were made. The concentrations of a large number of trace metals in the water and sediment were generally higher in the Stream than in the Well and Dam, particularly in summer. Trace metal concentration ranges in sediments of the Saricay Stream and its sources showed very wide ranges (as mass ratio): Co: 5–476 μg g−1, Cr: 15–1308 μg g−1, Cu: 7–128 μg g−1, Fe: 1120–13210 μg g−1, Mn: 150–2613 μg g−1, Ni: 102–390 μg g−1, Pb: 0.7–31.3 μg g−1 and Zn: 18–304 μg g−1, whereas Cd was not detected. Trace metal concentration ranges found in waters were: Co: 9.5–20.7 μg L−1, Cr: 20.3–284 μg L−1, Cu: 170–840 μg L−1, Fe: 176–1830 μg L−1, Mn: 29.3–387 μg L−1, and Ni: 4.3–21.9 μg L−1. Among the trace metals studied, Cd and Zn in two seasons and Pb in winter were usually not detected or in the recommended levels. In addition, Cd was not detected in the sediment during the winter season. The analysis of variance (one-way ANOVA) and correlation matrix was employed for the sediment and water samples of the two field surveys (summer and winter) comparison. The three sources showed differences in metal contents. The metal levels in sediments displayed marked seasonal and regional variations, which were attributed to anthropogenic influences and natural processes. In the Saricay Stream, high values of metals during the dry season showed an anthropological effect from small industry firms, e.g.: an olive mill and a dairy farm or water dilution during summer seasons. Finally, the pollution in this basin probably originated from small industrial, low quality coal-burned thermal power plants, and particularly agricultural and domestic waste discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号