首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past half-century there have been major changes in building materials and consumer products used indoors. Composite-wood, synthetic carpets, polymeric flooring, foam cushioning, plastic items and scented cleaning agents have become ubiquitous. The same is true for mechanical and electrical appliances such as washer/dryers, TVs and computers. These materials and products emit an array of chemicals including solvents, unreacted monomers, and additives. The consequent changes in emission profiles for indoor pollutants have been accompanied by modifications in building operations. Residences and non-residences are less ventilated than they were decades ago. Air-conditioned buildings are more numerous, especially in certain parts of the world. Most of these recirculate a high fraction of their air. The personal habits of building occupants, including the fraction who smoke indoors, have also changed. Taken together, these changes have altered the kind and concentrations of chemicals that occupants are exposed to in their homes, workplaces and schools. Since the 1950s, levels of certain indoor pollutants (e.g., formaldehyde, aromatic and chlorinated solvents, chlorinated pesticides, PCBs) have increased and then decreased. Levels of other indoor pollutants have increased and remain high (e.g., phthalate esters, brominated flame-retardants, nonionic surfactants and their degradation products). Many of the chemicals presently found in indoor environments, as well as in the blood and urine of occupants, were not present 50 years ago. Given the public's exposure to such species, there would be exceptional value in monitoring networks that provided cross-sectional and longitudinal information regarding pollutants found in representative buildings.  相似文献   

2.
Ozone concentrations that are several orders of magnitude greater than typical urban ambient concentrations are necessary for gas-phase ozonation of buildings, either for deodorization or for disinfection of biological agents. However, there is currently no published literature on the interaction of building materials and ozone under such extreme conditions. It would be useful to understand, for example in the case of building re-occupation planning, what types and amounts of reaction products may form and persist in a building after ozonation. In this study, 24 materials were exposed to ozone at concentrations of 1000 ppm in the inlet stream of experimental chambers. Fifteen target carbonyls were selected and measured as building ozonation by-products (BOBPs). During the 36 h that include the 16 h ozonation and 20 h persistence phase, the total BOBP mass released from flooring and wall coverings ranged from 1 to 20 mg m−2, with most of the carbonyls being of lower molecular weight (C1–C4). In contrast, total BOBP mass released from wood-based products ranged from 20 to 100 mg m−2, with a greater fraction of the BOBPs being heavier carbonyls (C5–C9). The total BOBP mass released during an ozonation event is a function of both the total surface area of the material and the BOBP emission rate per unit area of material. Ceiling tile, carpet, office partition, and gypsum wallboard with flat latex paint often have large surface areas in commercial buildings and these same materials exhibited relatively high BOBP releases. The greatest overall BOBP mass releases were observed for three materials that building occupants might have significant contact with: paper, office partition, and medium density fiberboard, e.g., often used in office furniture. These materials also exhibited extended BOBP persistence following ozonation; some BOBPs (e.g., nonanal) persist for months or more at emission rates large enough to result in indoor concentrations that exceed their odor threshold.  相似文献   

3.
There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000–1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m−2 of by-products.  相似文献   

4.
EPA's TEAM Study of personal exposure to volatile organic compounds (VOC) in air and drinking water of 650 residents of seven U.S. cities resulted in the identification of a number of possible sources encountered in peoples' normal daily activities and in their homes. A follow-up EPA study of publicaccess buildings implicated other potential sources of exposure. To learn more about these potential sources, 15 building materials and common consumer products were analyzed using a headspace technique to detect organic emissions and to compare relative amounts. About 10–100 organic compounds were detected offgassing from each material. Four mixtures of materials were then chosen for detailed study: paint on sheetrock; carpet and carpet glue; wallpaper and adhesives; cleansers and a spray pesticide. The materials were applied as normally used, allowed to age 1 week (except for the cleansers and pesticides, which were used normally during the monitoring period), and placed in an environmentally controlled chamber. Organic vapors were collected on Tenax-GC over a 4-h period and analyzed by GC-MS techniques. Emission rates and chamber concentrations were calculated for 17 target chemicals chosen for their toxic, carcinogenic or mutagenic properties. Thirteen of the 17 chemicals were emitted by one or more of the materials. Elevated concentrations of chloroform, carbon tetrachloride, 1,1,1-trichloroethane, n-decane, n-undecane, p-dichlorobenzene, 1,2-dichloroethane and styrene were produced by the four mixtures of materials tested. For some chemicals, these amounts were sufficient to account for a significant fraction of the elevated concentrations observed in previous indoor air studies. We conclude that common materials found in nearly every home and place of business may cause elevated exposures to toxic chemicals.  相似文献   

5.

Introduction  

It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise.  相似文献   

6.
Controlled laboratory chlorination of acetaldehyde (ACD) under typical drinking water conditions (pH 6.7, 7.6 and 8.8, and temperature 4 degrees C and 21 degrees C) revealed that the formation of chloral hydrate (CH), the most common halogenated acetaldehyde (HAs), increased with contact time (0-10 days). However, at increased pH and temperature, CH reached maximum levels and subsequently broke down partially to chloroform and other unidentified compounds. After 10 days contact time, a maximum of 63% (molar) of the initial ACD consumed were converted into CH or chloroform (TCM). Various surveys of drinking water systems indicated that ACD is not the only precursor of CH. A suite of aldehydes (including ACD), and chlorinated disinfection by-products (including TCM and CH) were found in most distribution systems. The levels of bromide in source water impacted speciation of HAs. In addition to CH, brominated and other mixed (Cl/Br) acetaldehydes were detected in most samples; the speciation of HAs and THMs followed comparable trends. Similar to chloroform for trihalomethanes, CH contributed from as low as 5% to up to 60% of the total HAs. The bromine incorporation factors (BIF) in THMs and HAs were shown to increase with increasing bromide ion concentrations in the source water. Brominated THMs are more readily formed than their HA analogues; in fact, BIF values for THMs were 2-3 times higher than for the HAs. It was found that HAs may be as high as THMs in some drinking waters. As a result, the determination of the other target HAs, in addition to CH, is necessary for a better assessment of the pool of disinfection by-products in drinking water.  相似文献   

7.
Direct current applied to a tin oxide anode submersed in water has the potential to generate hydroxyl radicals, a strong chemical oxidant. Tin oxide anode systems, which may represent a viable alternative disinfectant, were investigated for the disinfection of secondary effluents. Coliform bacteria in the effluent were effectively inactivated in a bench-scale tin oxide disinfection system. The number of anodes in the tin oxide disinfection system influenced the steady-state concentration of hydroxyl radicals and, consequently, the contact time necessary to achieve a specified dose. The life expectancy of the anodes was greater than 30 days and no appreciable loss of tin was observed over a 5-day period. A preliminary estimate of the capital and operating costs of a pilot- or full-scale tin oxide disinfection system designed to meet a discharge requirement of 23 most probable number/100 mL at a 3 785-m3/d (1-mgd) facility was comparable to UV and chlorination/dechlorination facilities. Based on this preliminary assessment, tin oxide disinfection systems are a promising alternative disinfectant for secondary effluents.  相似文献   

8.

Background, aim and scope  

After the discovery of chloroform in drinking water, an extensive amount of work has been dedicated to the factors influencing the formation of halogenated disinfections by-products (DBPs). The disinfection practice can vary significantly from one country to another. Whereas no disinfectant is added to many water supplies in Switzerland or no disinfectant residual is maintained in the distribution system, high disinfectant doses are applied together with high residual concentrations in the distribution system in other countries such as the USA or some southern European countries and Romania. In the present study, several treatment plants in the Somes river basin in Romania were investigated with regard to chlorine practice and DBP formation (trihalomethanes (THMs)). Laboratory kinetic studies were also performed to investigate whether there is a relationship between raw water dissolved organic matter, residual chlorine, water temperature and THM formation.  相似文献   

9.
BACKGROUND, AIMS AND SCOPE: The building materials are recognised to be major contributors to indoor air contamination by volatile organic compounds (VOCs). The improvement of the quality of the environment within buildings is a topic of increasing research and public interest. Legislation in preparation by the European Commission may induce, in the near future, European Union Member States to solicit the industries of paints, varnishes and flooring materials for taking measures, in order to reduce the VOC emissions resulting from the use of their products. Therefore, product characterisation and information about the influence of environmental parameters on the VOC emissions are fundamental for providing the basic scientific information required to allow architects, engineers, builders, and building owners to provide a healthy environment for building occupants. On the other hand, the producers of coating building materials require this information to introduce technological alterations, when necessary, in order to improve the ecological quality of their products, and to make them more competitive. Studies of VOC emissions from wet materials, like paints and varnishes, have usually been conducted after applying the material on inert substrates, due to its non-adsorption and non-porosity properties. However, in real indoor environments, these materials are applied on substrates of a different nature. One aim of this work was to study, for the first time, the VOC emissions from a latex paint applied on concrete. The influence of the substrate (uncoated cork parquet, eucalyptus parquet without finishing and pine parquet with finishing) on the emissions of VOC from a water-based varnish was also studied. For comparison purposes, polyester film (an inert substrate) was used for both wet materials. METHODS: The specific emission rates of the major VOCs were monitored for the first 72 h of material exposure in the atmosphere of a standardized test chamber. The air samples were collected on Tenax TA and analysed using thermal desorption online with gas chromatography provided with both mass selective detection and flame ionisation detection. A double exponential model was applied to the VOC concentrations as a function of time to facilitate the interpretation of the results. RESULTS AND DISCUSSION: The varnish, which was introduced in the test chamber 23 h after the application of the last layer of material, emitted mainly glycolethers. Only primary VOCs were emitted, but their concentrations varied markedly with the nature of the substrate. The higher VOC concentrations were observed for the parquets of cork and eucalyptus, which indicated that they have a much higher porosity and, therefore, a higher power of VOC adsorption than the finished pine parquet (and polyester film). The paint was introduced in the chamber just after its application. Only primary VOCs were emitted (esters, phthalates, glycolethers and white spirit) but some compounds, like 2-(2-butoxyethoxy)ethanol and diethylphthalate, were only observed for paint/polyester, which suggested that they were irreversibly adsorbed by the paint/concrete. Compared with the inert substrate, the rate of VOC emissions was lower for concrete in the wet-stage (first hours after the paint application) but slightly higher later (dry-stage) as a consequence of desorption. CONCLUSIONS: As to varnish, the substrates without finishing, like cork and eucalyptus parquets, displayed a higher power of adsorption of VOCs than the pine parquet with finishing, probably because they have a higher porosity. As concerns paint, the total masses of VOCs emitted were lower for concrete than for polyester, indicating that concrete reduces the global VOC emissions from the latex paint. Concrete is seen to have a strong power of adsorption of VOCs. Some compounds, namely 2-(2-butoxyethoxy)ethanol, diethylphthalate and TEXANOL (this partially), were either irreversibly adsorbed by the concrete or desorbed very slowly (at undetected levels). A similar behaviour had not been reported for gypsum board, a paint substrate studied before. RECOMMENDATIONS AND OUTLOOK: The present data suggest that concrete may be a recommendable substrate for paint in an indoor environment. As the nature of the substrate conditions the rate and nature of VOC emissions from wet materials, it must be explicit when emissions from composite materials are reported, in order to allow comparisons and labelling of the product in terms of indoor air quality.  相似文献   

10.
The sorption of volatile organic compounds (VOCs) by different building materials can significantly affect VOC concentrations in indoor environments. In this paper, a new model has been developed for simulating VOC sorption and desorption rates of homogeneous building materials with constant diffusion coefficients and material–air partition coefficients. The model analytically solves the VOC sorption rate at the material–air interface. It can be used as a “wall function” in combination with more complex gas-phase models that account for non-uniform mixing to predict sorption process. It can also be used in conjunction with broader indoor air quality studies to simulate VOC exposure in buildings.  相似文献   

11.
The past 50 years have seen rapid development of new building materials, furnishings, and consumer products and a corresponding explosion in new chemicals in the built environment. While exposure levels are largely undocumented, they are likely to have increased as a wider variety of chemicals came into use, people began spending more time indoors, and air exchange rates decreased to improve energy efficiency. As a result of weak regulatory requirements for chemical safety testing, only limited toxicity data are available for these chemicals. Over the past 15 years, some chemical classes commonly used in building materials, furnishings, and consumer products have been shown to be endocrine disrupting chemicals – that is they interfere with the action of endogenous hormones. These include PCBs, used in electrical equipment, caulking, paints and surface coatings; chlorinated and brominated flame retardants, used in electronics, furniture, and textiles; pesticides, used to control insects, weeds, and other pests in agriculture, lawn maintenance, and the built environment; phthalates, used in vinyl, plastics, fragrances, and other products; alkylphenols, used in detergents, pesticide formulations, and polystyrene plastics; and parabens, used to preserve products like lotions and sunscreens. This paper summarizes reported indoor and outdoor air concentrations, chemical use and sources, and toxicity data for each of these chemical classes. While industrial and transportation-related pollutants have been shown to migrate indoors from outdoor sources, it is expected that indoor sources predominate for these consumer product chemicals; and some studies have identified indoor sources as the predominant factor influencing outdoor ambient air concentrations in densely populated areas. Mechanisms of action, adverse effects, and dose–response relationships for many of these chemicals are poorly understood and no systematic screening of common chemicals for endocrine disrupting effects is currently underway, so questions remain as to the health impacts of these exposures.  相似文献   

12.
Adsorption and desorption by indoor surface materials can have significant impacts on the level of volatile organic compounds (VOCs) indoors. The surface sink model (SSM) was developed to account for these interactions in an indoor air quality model. Two types of scale-up experiments were conducted to validate the SSM that was developed based on small-scale chamber experiments. Conflicting results were obtained from a large-scale laboratory experiment and a field test. From the large-scale laboratory experiment involving three materials and three chemicals, relatively good agreement was observed between measurements and predictions by the SSM. In contrast, the level of sorption in the field test was observed to be at least 9 times greater than was predicted by the SSM.  相似文献   

13.
During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are explored. This review also considers the phenomenon that has become known as Sick Building Syndrome (SBS), where the occupants of certain affected buildings repeatedly describe a complex range of vague and often subjective health complaints. These are often attributed to poor air quality. However, many cases of SBS provide a valuable insight into the problems faced by investigators attempting to establish causality. We know much less about the health risks from indoor air pollution than we do about those attributable to the contamination of outdoor air. This imbalance must be redressed by the provision of adequate funding, and the development of a strong commitment to action within both the public and private sectors. It is clear that meeting the challenges and resolving the uncertainties associated with air quality problems in the indoor environment will be a considerable undertaking.  相似文献   

14.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

15.
As part of the Polar Sunrise Experiments (PSE) 1995, we report our results on measurement of non-methane hydrocarbons (NMHC) collected at Alert, Northwest Territories, Canada (82.5° N, 62.3° W) from Julian days 57 to 113, 1995 along with our data on continuous methane and ozone measurements during the same period. The concentration of NMHCs such as alkanes correlated well with that of methane during the dark period before polar sunrise. However, no correlation was observed after the sunrise. Several ozone depletion events and concurrent decreases in hydrocarbon concentrations relative to their background levels were observed. In all ozone depletion periods, concentration changes of alkanes and toluene were consistent with the occurrence of Cl-atom reactions. The characteristics of alkane isomer concentration changes suggest the dominance of HO chemistry prior to, and a switch to Cl chemistry after, the polar sunrise (during the ozone depletion events). The changes in ethyne concentration from their background level were in excess of those expected from Cl-atom kinetics alone and are attributed to additional Br-atom reactions. The time integral for Br mixing ratios is a few orders of magnitudes higher than that for Cl-atoms, suggesting much higher Br-atom concentrations compared to Cl-atom concentrations, if they are present simultaneously.  相似文献   

16.
活性炭纤维吸附含溴甲烷气体的性能   总被引:1,自引:1,他引:0  
采用动态吸附法在25℃下,测定了3种活性炭纤维(ACF-1、ACF-2和ACF-3)对含溴甲烷气体的吸附性能和回收效果,并对活性炭纤维的孔结构进行表征.探讨了孔结构、溴甲烷浓度、气体流量、循环使用次数等因素对活性炭纤维吸附溴甲烷性能的影响.结果表明,活性炭纤维比表面积大小及0.4~0.8 nm左右的微孔数量决定了其对溴甲烷吸附性能的优劣;气体中溴甲烷的浓度的提高使活性炭纤维对溴甲烷的穿透和饱和吸附量增加,而气体流量的增加则使活性炭纤维对溴甲烷的穿透和饱和吸附量降低,但两者均使穿透和饱和吸附时间缩短;活性炭纤维多次循环使用后,对溴甲烷的吸附容量明显地降低,循环12次后达到稳定吸附,其稳定吸附值为133.5 mg/g.  相似文献   

17.
ABSTRACT

Linear, quadratic, and artificial neural network (ANN)-based metamodels were developed for predicting the extent of anthrax spore inactivation by chlorine dioxide in a ventilated three-dimensional space over time from computational fluid dynamics model (CFD) simulation data. Dimensionless groups were developed to define the design space of the problem scenario. The Hammersley sequence sampling (HSS) method was used to determine the sampling points for the numerical experiments within the design space. A CFD model, comprised of multiple submodels, was applied to conduct the numerical experiments. Large eddy simulation (LES) with the Smagorinsky subgrid-scale model was applied to compute the airflow. Anthrax spores were modeled as a dispersed solid phase using the Lagrangian treatment. The disinfectant transport was calculated by solving a mass transport equation. Kinetic decay constants were included for spontaneous decay of the disinfectant and for the reaction of the disinfectant with the surfaces of the three-dimensional space. To enhance the mixing of the disinfectant with the room air, a momentum source was included in the simulation. An inactivation rate equation accounted for the reaction between the spores and the disinfectant. The ANN-based metamodels were most successful in predicting the number of viable bioaerosols remaining in an arbitrary enclosed space. Sensitivity analysis showed that the mass fraction of the disinfectant, inactivation rate constant, and contact time had the most influence on the inactivation of the spores.

IMPLICATIONS This investigation presents a framework for the development of user-friendly models; metamodels for the prediction of the number of viable spores remaining in an indoor room during disinfection from accurate but time-consuming CFD studies. During any decontamination event, to know when to stop pumping in the disinfectant and to know what level of log reduction of the spores have been achieved before even starting decontamination would provide valuable guidance. The neural network based metamodels can be applied to obtain quick and relatively accurate answers. This would be necessary when immediate information is required during emergencies.  相似文献   

18.
Abstract

Volatile organic compounds (VOCs) are a major concern for indoor air pollution because of the impacts on human health. In recent years, interest has increased in the development and design of activated carbon filters for removing VOCs from indoor air. Although extensive information is available on sources, concentrations, and types of indoor VOCs, there is little or no information on the performance of indoor air adsorption systems for removing low concentrations of primary VOCs. Filter designs need to consider various factors such as empty bed contact time, humidity effects, competitive adsorption, and feed concentration variations, whereas adsorption capacities of the indoor VOCs at the indoor concentration levels are important parameters for filter design. A preliminary assessment of the feasibility of using adsorption filters to remove low concentrations of primary VOCs can be performed. This work relates the information (including VOC classes in indoor air, the typical indoor concentrations, and the adsorption isotherms) with the design of a particular adsorbent/adsorbates system. As groundwork for filter design and development, this study selects the primary VOCs in indoor air of residences, schools, and offices in different geographical areas (North America, Europe, and Asia) on the basis of occurrence, concentrations, and health effects. Activated carbon fiber cloths (ACFCs) are chosen as the adsorbents of interest. It is demonstrated that the isotherm of a VOC (e.g., toluene on the ACFC) at typical indoor concentrations—parts per billion by volume (ppbv) level—is different than the isotherm at parts per million by volume (ppmv) levels reported in the publications. The isotherms at the typical indoor concentrations for the selected primary VOCs are estimated using the Dubinin–Radushkevitch equation. The maximum specific throughput for an indoor VOC removal system to remove benzene is calculated as a worst-case scenario. It is shown that VOC adsorption capacity is an important indicator of a filter’s lifetime and needs to be studied at the appropriate concentration range. Future work requires better understanding of the realistic VOC concentrations and isotherms in indoor environments to efficiently utilize adsorbents.  相似文献   

19.
The fungi and bacterial levels of the indoor air environments of 77 office buildings were measured in winter and a comparison was made between the buildings with microbe sources in their structures and those without such sources. Penicillium, yeasts, Cladosporium and non-sporing isolates were the commonest fungi detected in the indoor air and in settled dust, in both the mould-damaged and control buildings. Aspergillus ochraceus, Aspergillus glaucus and Stachybotrys chartarium were found only in environmental samples from the mould-damaged buildings. Some other fungi, with growth requiring of water activity, aw, above 0.85, occurred in both the reference and mould-damaged buildings, but such fungi were commoner in the latter type of buildings. The airborne concentrations of Penicillium, Aspergillus versicolor and yeasts were the best indicators of mould damage in the buildings studied. Penicillium species and A. versicolor were also the most abundant fungi in the material samples. This study showed that the fungi concentrations were very low (2–45 cfu m−3 90% of the concentrations being <15 cfu m−3) in the indoor air of the normal office buildings. Although the concentration range of airborne fungi was wider for the mould-damaged buildings (2–2470 cfu m−3), only about 20% of the samples exceeded 100 cfu m−3. The concentrations of airborne bacteria ranged from 12 to 540 cfu m−3 in the control buildings and from 14 to 1550 cfu m−3 in the mould-damaged buildings. A statistical analysis of the results indicated that bacteria levels are generally <600 cfu m−3 in office buildings in winter and fungi levels are <50 cfu m−3. These normal levels are applicable to subarctic climates for urban, modern office buildings when measurements are made using a six-stage impactor. These levels should not be used in evaluations of health risks, but elevated levels may indicate the presence of abnormal microbe sources in indoor air and a need for additional environmental investigations.  相似文献   

20.
The implementation of a risk-based corrective action approach often requires consideration of soil vapor migration into buildings and potential inhalation exposure and risk to human health. Due to the uncertainty associated with models for this pathway, there may be a desire to analyze indoor air samples to validate model predictions, and this approach is followed on a somewhat frequent basis at sites where risks are considered potentially significant. Indoor air testing can be problematic for a number of reasons. Soil vapor intrusion into buildings is complex, highly dependent on site-specific conditions, and may vary over time, complicating the interpretation of indoor air measurements when the goal is to deduce the subsurface-derived component. An extensive survey of indoor air quality data sets highlights the variability in indoor volatile organic compound (VOC) concentrations and numerous sources that can lead to elevated VOC levels. The contribution from soil vapor is likely to be small relative to VOCs from other sources for most sites. In light of these challenges, we discuss how studies that use indoor air testing to assess subsurface risks could be improved. To provide added perspective, we conclude by comparing indoor air concentrations and risks arising from subsurface VOCs, predicted using standard model equations for soil vapor fate and intrusion into buildings, to those associated with indoor sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号