首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper illustrates the useful early-warning role of the energy-dispersive X-ray fluorescence technique against a potential health hazard being posed by dumping effluents from an industrial unit involved in the manufacture of lead-batteries, in a nearby water-canal used for irrigation purposes by surrounding villages. These effluents were shown to contain mercury at a potentially unsafe level, resulting in timely initiation of necessary preventive measures. The standard fundamental parameter method was invoked for a quantitative estimation of the mercury (Hg) concentration. In addition, L-series (rather than the usual K-series) X-rays were used for excitation, mainly on account of the type of the available excitation source.  相似文献   

2.
This research investigates heavy metal pollution around one of the most important mining areas in Turkey, the Sebinkarahisar (Giresun) lead–zinc mining, by means of analyzing moss and soil samples collected in the neighborhood of the copper mining at different distances. Energy dispersive X-ray fluorescence spectrometry (Epsilon 5, PANalytical, Almelo, The Netherlands) is utilized in the experiments. The results have indicated that the both moss and soil samples contain aluminum, vanadium, chromium, manganese, iron, nickel, copper, zinc, arsenic, barium, cerium, tungsten, and lead. The comparison of the heavy metal concentrations with the typical measurements in the world and with the limit values for the human health has revealed the critical heavy metal pollution levels in the region. The possible consequences of these results are briefly discussed from the point of potential hazards to ecology and human health.  相似文献   

3.
The sampling of carpeted surfaces to test for lead contamination primarily focuses upon vacuum techniques. Vacuum sampling techniques, however, require time-consuming, expensive laboratory analysis of the dusts obtained and are unable to determine total lead load on the carpet. X-ray fluorescence (XRF) analysis is an on-site, inexpensive, non-destructive, quick technique for predicting metals levels in a variety of media, such as water, soil, filter paper and painted surfaces. A 1992 study of the feasibility of XRF to analyze for lead and soil loadings on carpeted surfaces indicated that XRF can detect lead at a low enough level to warrant further study. This paper expands this earlier study and developes lead and soil loading calibration curves for three different carpet types based upon XRF lead L-beta peak areas and XRF iron and barium K-alpha peak and background areas. Results indicate that variation in the data can be reduced through modifications of the XRF analysis technique, thus reducing the statistically determined detection level, and that carpet type does affect the calibration. Detection levels of approximately 70 mg/m2 for lead and 5 g/m2 for soil were obtained. Overall, good agreement was found between results of this study and the earlier one. XRF shows excellent potential for quantitative analysis of lead on carpeted surfaces.  相似文献   

4.
Analytical results of soil samples taken in three different mercury mining sites in Northern Spain are studied to assess the potential adverse health effects of the exposure to trace elements associated with the mining process. Doses contacted through ingestion and inhalation and the dose absorbed through the skin were calculated using USEPA's exposure parameters and the US Department of Energy's toxicity values. The results of the risk assessment indicate that the highest risk is associated with ingestion of soil particles and that the trace element of major concern is arsenic, the exposure to which results in a high cancer risk value for all the sites ranging from 3.3 × 10(-5) to 3.6 × 10(-3), well above the 1 × 10(-5) probability level deemed unacceptable by most regulatory agencies. Regarding non-cancer effects, exposure to polluted soils yields an aggregate hazard index above the threshold value of 1 for all three sites, with As and Hg as the main contributors. Risk assessment has proven to be a very useful tool to identify the contaminants and exposure pathways of most concern in the soils from metal mining sites, as well as to categorize them in terms of action priority to ensure fitness for use.  相似文献   

5.
The movement and degradation of pesticide residues in soils and groundwater are complex processes affected by soil physical, (bio)chemical, and hydrogeological properties, climatic conditions, and agricultural practices. This work presents a physically-based analytical model suitable for long-term predictions of pesticide concentrations in groundwater. The primary interest is to investigate the impact of soil environment, related physical and (bio)chemical processes, especially, volatilization, crop uptake, and agricultural practices on long-term vulnerability of groundwater to contamination by pesticides. The soil is separated into root and intermediate vadose zones, each with uniform properties. Transport in each soil zone is modeled on the basis of complete mixing, by spatial averaging the related point multiphase-transport partial differential equation (i.e., linear-reservoir models). Transport in the aquifer, however, is modeled by a two-dimensional advection-dispersion transport equation, considering adsorption and first-order decay rate. Vaporization in the soil is accounted for by assuming liquid-vapor phase partitioning using Henry's law, and vapor flux (volatilization) from the soil surface is modeled by diffusion through an air boundary layer. Sorption of liquid-phase solutes by crops is described by a linear relationship which is valid for first-order (passive) crop uptake. The model is applied to five pesticides (atrazine, bromacil, chlordane, heptachlor, and lindane), and the potential for pesticide contamination of groundwater is investigated for sandy and clayey soils. Simulation results show that groundwater contamination can be substantially reduced for clayey soil environments, where bio(chemical) degradation and volatilization are most efficient as natural loss pathways for the pesticides. Also, uptake by cross can be a significant mechanism for attenuating exposure levels in ground-water especially in a sandy soil environment, and for relatively persisting pesticides. Further, simulations indicate that changing agricultural practices can have a profound effect on vulnerability of groundwater to mobile and relatively persisting pesticides.  相似文献   

6.
Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.  相似文献   

7.
Use of indifference curves, defined as functionality between development index and pollution load to evaluate environmental impact, is proposed. Existing Battelle environmental evaluation methodology is subjective in its approach. The use of indifference curves lends a more objective approach to environment assessment methodology. The extent of environmental damage we are prepared to accept, for a development, can be explained by Willingness to Pay and Willingness to Accept approach. The application of proposed approach has been demonstrated taking an example of Power plant set up in forest area. The curves clearly show that cost of EMP considering mitigation of ecological damage is higher than the EMP mitigating impacts of air and water pollution only. The example stresses the need for willingness to accept along with willingness to pay.  相似文献   

8.
Life cycle assessment (LCA) is explored as an analytical tool in strategic environmental assessment (SEA), illustrated by case where a previously developed SEA process was applied to municipal energy planning in Sweden. The process integrated decision-making tools for scenario planning, public participation and environmental assessment. This article describes the use of LCA for environmental assessment in this context, with focus on methodology and practical experiences. While LCA provides a systematic framework for the environmental assessment and a wider systems perspective than what is required in SEA, LCA cannot address all aspects of environmental impact required, and therefore needs to be complemented by other tools. The integration of LCA with tools for public participation and scenario planning posed certain methodological challenges, but provided an innovative approach to designing the scope of the environmental assessment and defining and assessing alternatives.  相似文献   

9.
A new method for the determination of free fibres of chrysotile in contaminated soils is described. The detection limit of 0.5 wt per thousand is reached by an enrichment process of the asbestos fraction of the sample using a standard laboratory elutriator for sedimentation analysis. The analysis of the enriched fraction is performed by X-ray powder diffraction using a conventional instrument. The procedure can be successfully applied to several soils of different nature throughout thermal treatment and removal of possible interferences due to some matrix components. This method is straightforward, routinized and has been especially developed to fulfil the request of public and private institutions for an appropriate quantitative determination of chrysotile free fibres in contaminated soils.  相似文献   

10.
Occupational exposure to inhalational anesthetics occurs routinely in operating rooms. It could induce serious health hazards and diseases. This exposure assessment is a crucial step in determining risks. In this study, a pen-shaped holder for solid-phase microextraction (SPME) sampler was successfully applied as a time-weighted average sampling tool for workshift exposure assessment of operation room staff to halothane. It proved to be very convenient for use in occupational environments such as operation rooms. Samples were analyzed by a gas chromatography-mass spectrometry. The validity of the SPME method was checked in real-world conditions with Occupational Safety and Health Administration (OSHA) 103 standard method for the determination of inhalational anesthetics. A good agreement between OSHA 103 and SPME methods was obtained and results demonstrated no statistically significant differences in anesthetic concentrations determined by the two analytical methods (p?≥?0.05). It is concluded that SPME in retracted mode could successfully be applied in occupational exposure assessment purposes.  相似文献   

11.
Resource exploitation in lowland tropical forests is increasingand causing loss of biodiversity. Effective evaluation and management of the impacts of development on tropical forests requires appropriate assessment and monitoring tools. We proposethe use of 0.1-ha multi-scale, modified Whittaker plots (MWPs) to assess and monitor vegetation in lowland tropical rainforests.We established MWPs at 4 sites to: (1) describe and comparecomposition and structure of the sites using MWPs, (2) compare these results to those of 1-ha permanent vegetation plots (BDPs),and (3) evaluate the ability of MWPs to detect changes in populations (statistical power). We recorded more than 400 species at each site. Species composition among the sites was distinctive, while mean abundance and basal area was similar. Comparisons between MWPs and BDPs show that they record similarspecies composition and abundance and that both perform equallywell at detecting rare species. However, MWPs tend to record morespecies, and power analysis studies show that MWPs were more effective at detecting changes in the mean number of species of trees 10 cm in diameter at breast height (dbh) and in herbaceous plants. Ten MWPs were sufficient to detect a change of 11% in the mean number of herb species, and they were able to detect a 14% change in the mean number of species of trees 10 cm dbh. The value of MWPs for assessment and monitoringis discussed, along with recommendations for improving the sampling design to increase power.  相似文献   

12.
Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L?1 Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg?1) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.  相似文献   

13.
Current and proposed European Union (EU) regulations require the residual material from municipal solid waste incineration to be characterised prior to disposal. X-Ray fluorescence (XRF) provides a rapid and non-destructive technique for analysing such materials.  相似文献   

14.
Accurate characterization of heavy-metal contaminated areas and quantification of the uncertainties inherent in spatial prediction are crucial for risk assessment, soil remediation, and effective management recommendations. Topsoil samples (0–15 cm) (n = 547) were collected from the Zhangjiagang suburbs of China. The sequential indicator co-simulation (SIcS) method was applied for incorporating the soft data derived from soil organic matter (SOM) to simulate Hg concentrations, map Hg contaminated areas, and evaluate the associated uncertainties. High variability of Hg concentrations was observed in the study area. Total Hg concentrations varied from 0.004 to 1.510 mg kg−1 and the coefficient of variation (CV) accounts for 70%. Distribution patterns of Hg were identified as higher Hg concentrations occurred mainly at the southern part of the study area and relatively lower concentrations were found in north. The Hg contaminated areas, identified using the Chinese Environmental Quality Standard for Soils critical values through SIcS, were limited and distributed in the south where the SOM concentration is high, soil pH is low, and paddy soils are the dominant soil types. The spatial correlations between Hg and SOM can be preserved by co-simulation and the realizations generated by SIcS represent the possible spatial patterns of Hg concentrations without a smoothing effect. Once the Hg concentration critical limit is given, SIcS can be used to map Hg contaminated areas and quantitatively assess the uncertainties inherent in the spatial prediction by setting a given critical probability and calculating the joint probability of the obtained areas.  相似文献   

15.
The compositions of commercially available solutions of short chain chlorinated paraffins (SCCP) and technical mixtures were determined by high resolution gas chromatography (HRGC) electron capture negative ionisation (ECNI) combined with low resolution mass spectrometry (LRMS). Differences and similarities in the relative distribution of congeners and homologues were investigated by cluster analysis. Samples could be separated into two groups/clusters with similar molecular mass, chlorination degree and congener pattern. With the exception of one sample, the use of CH4-ECNI-MS led to an overestimation of the chlorine content. Moreover, the influence of different SCCP mixtures on the quantification was studied. The results showed that small differences in the chlorine content could sometimes cause substantial systematic errors of up to 119% despite similar homologue and congener patterns. Errors of quantification corresponded to the deviations between response factors of sample and standard. As a consequence SCCPs should be quantified with a standard matching the overall response factor of the sample.  相似文献   

16.
Traditionally, environmental decision analysis in subsurface contamination scenarios is performed using cost–benefit analysis. In this paper, we discuss some of the limitations associated with cost–benefit analysis, especially its definition of risk, its definition of cost of risk, and its poor ability to communicate risk-related information. This paper presents an integrated approach for management of contaminated ground water resources using health risk assessment and economic analysis through a multi-criteria decision analysis framework. The methodology introduces several important concepts and definitions in decision analysis related to subsurface contamination. These are the trade-off between population risk and individual risk, the trade-off between the residual risk and the cost of risk reduction, and cost-effectiveness as a justification for remediation. The proposed decision analysis framework integrates probabilistic health risk assessment into a comprehensive, yet simple, cost-based multi-criteria decision analysis framework. The methodology focuses on developing decision criteria that provide insight into the common questions of the decision-maker that involve a number of remedial alternatives. The paper then explores three potential approaches for alternative ranking, a structured explicit decision analysis, a heuristic approach of importance of the order of criteria, and a fuzzy logic approach based on fuzzy dominance and similarity analysis. Using formal alternative ranking procedures, the methodology seeks to present a structured decision analysis framework that can be applied consistently across many different and complex remediation settings. A simple numerical example is presented to demonstrate the proposed methodology. The results showed the importance of using an integrated approach for decision-making considering both costs and risks. Future work should focus on the application of the methodology to a variety of complex field conditions to better evaluate the proposed methodology.  相似文献   

17.
The long-term application of phosphate fertilizers on vegetable production fields has raised concerns about the potential health risks of heavy metal contamination of crops grown on contaminated soils in the Hamadan province, western Iran. This study found that long-term fertilizer use led to a growing accumulation of heavy metals in soils. High concentrations of elemental As, Cd, Cr, Cu, Pb, and Zn were found in potatoes sampled from overused phosphate-fertilized soils, which increased the daily intake of metals in food. However, the ingestion of potatoes from soils affected by phosphate fertilizers posed a low health risk when compared with the health risk index of <1 for heavy metals. Nevertheless, heavy metal concentrations should be periodically monitored in vegetables grown in these soils. It would also be beneficial to implement effective remediation technologies to minimize possible impacts on human health.  相似文献   

18.
Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P < 0.05) from the amounts degraded. Although the HPCD extraction did overestimate the microbially degradable fraction of the higher molecular weight PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.  相似文献   

19.
The quantification of knowledge related to the terrain and the landuse/landcover of administrative units in Southern Greece (Peloponnesus) is performed from the CGIAR-CSI SRTM digital elevation model and the CORINE landuse/landcover database. Each administrative unit is parametrically represented by a set of attributes related to its relief. Administrative units are classified on the basis of K-means cluster analysis in an attempt to see how they are organized into groups and cluster derived geometric signatures are defined. Finally each cluster is parametrically represented on the basis of the occurrence of the Corine landuse/landcover classes included and thus, landcover signatures are derived. The geometric and the landuse/landcover signatures revealed a terrain dependent landuse/landcover organization that was used in the assessment of the forest fires impact at moderate resolution scale.  相似文献   

20.
In the industrial area of Chinhat, Lucknow (India) wastewater coming from pesticide manufacturing and other industries is used to irrigate the agricultural crops. This practice has been polluting the soil and pollutants might reach the food chain. Gas chromatographic analysis revealed the presence of certain organochlorine pesticides in soil samples. Samples were extracted using different solvents, i.e., hexane, acetonitrile, methanol, chloroform, and acetone (all were HPLC-grade, SRL, India). Soil extracts were assayed for mutagenicity using Ames Salmonella/mammalian microsome test. Mutagenicity was observed in the test samples and TA98 was the most responsive strain for all the soil extracts (irrigated with wastewater) in terms of mutagenic index in the presence (+S9) and absence (−S9) of metabolic activation. In terms of slope (m) of linear dose–response curve for the most responsive strain TA98 exhibited highest sensitivity against the soil extracts in the presence and absence of S9 fraction. Hexane-extracted soil sample (wastewater) exhibited maximum mutagenicity in terms of net revertants per gram of soil in the presence and absence of S9 mix as compared to the other soil extracts. Groundwater-irrigated soil extracts displayed low level of mutagenicity as compared to wastewater-irrigated soil. The soil is accumulating a large number of pollutants due to wastewater irrigation and this practice of accumulation has an adverse impact on soil health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号