首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Temporary ponds are physically disturbed environments that fluctuate on seasonal and interannual scales. These ecosystems are also susceptible to anthropogenic perturbation such as contamination inputs. However, the interactive effects of natural disturbance and anthropogenic stress on ecosystem processes and community dynamics have hardly been assessed in these ecosystem types. We used a multiple before-after control-impact (MBACI) design to study zooplankton community recovery from low and high inputs of a fire retardant in artificially constructed ponds over three hydroperiods. The retardant caused a decline in species richness and an increase in rotifers during summer and winter months relative to controls and pretreatment dates, and the duration of these changes varied among retardant treatments. In nonmetric, multidimensional scaling analyses the increased rotifer densities were reflected in loops that showed recurring deviations from and (upon collapse) approaches to reference conditions, while the effects of the anthropogenic stressor persisted in the ponds. The amplitudes of fluctuation followed no regular patterns; it varied with retardant treatment level and was higher in the third hydroperiod compared to the second in one of the treatments. From a temporal perspective, this non-dampened pattern suggests a new cause-effect mechanism for disturbance ecology, which we refer to as a "protracted press disturbance, roller coaster response" relationship. This model emphasizes stochastic oscillations in community composition, punctuated by periods in which the community approaches reference conditions. From the applied viewpoint, this model suggests that the accurate detection of perturbation and the implementation of sound management and restoration strategies will require intensive sampling designs that span multiple hydroperiods in persistently degraded ponds.  相似文献   

2.
Resilience of Southwestern Amazon Forests to Anthropogenic Edge Effects   总被引:2,自引:0,他引:2  
Abstract:  Anthropogenic edge effects can compromise the conservation value of mature tropical forests. To date most edge-effect research in Amazonia has concentrated on forests in relatively seasonal locations or with poor soils in the east of the basin. We present the first evaluation from the relatively richer soils of far western Amazonia on the extent to which mature forest biomass, diversity, and composition are affected by edges. In a southwestern Amazonian landscape we surveyed woody plant diversity, species composition, and biomass in 88 × 0.1 ha samples of unflooded forest that spanned a wide range in soil properties and included samples as close as 50 m and as distant as >10 km from anthropogenic edges. We applied Mantel tests, multiple regression on distance matrices, and other multivariate techniques to identify anthropogenic effects before and after accounting for soil factors and spatial autocorrelation. The distance to the nearest edge, access point, and the geographical center of the nearest community ("anthropogenic-distance effects") all had no detectable effect on tree biomass or species diversity. Anthropogenic-distance effects on tree species composition were also below the limits of detection and were negligible in comparison with natural environmental and spatial factors. Analysis of the data set's capacity to detect anthropogenic effects confirmed that the forests were not severely affected by edges, although because our study had few plots within 100 m of forest edges, our confidence in patterns in the immediate vicinity of edges is limited. It therefore appears that the conservation value of most "edge" forests in this region has not yet been compromised substantially. We caution that because this is one case study it should not be overinterpreted, but one explanation for our findings may be that western Amazonian tree species are naturally faster growing and more disturbance adapted than those farther east.  相似文献   

3.
Vasseur DA  Gaedke U 《Ecology》2007,88(8):2058-2071
Community biomass is often less variable than the biomasses of populations within the community, yet attempts to implicate compensatory dynamics between populations as a cause of this relationship often fail. In part, this may be due to the lack of appropriate metrics for variability, but there is also great potential for large-scale processes such as seasonality or longer-term environmental change to obscure important dynamics at other temporal scales. In this study, we apply a scale-resolving method to long-term plankton data, to identify the specific temporal scales at which community-level variability is influenced by synchrony or compensatory dynamics at the population level. We show that variability at both the population and community level is influenced strongly by a few distinct temporal scales: in phytoplankton, ciliate, rotifer, and crustacean communities, synchronous dynamics are predominant at most temporal scales. However, in phytoplankton and crustacean communities, compensatory dynamics occur at a sub-annual scale (and at the annual scale in crustaceans) leading to substantial reductions in community-level variability. Aggregate measures of population and community variability do not detect compensatory dynamics in these communities; thus, resolving their scale dependence unmasks dynamics that are important for community stability in this system. The methods and results presented herein will ultimately lead to a better understanding of how stability is achieved in communities.  相似文献   

4.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

5.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

6.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

7.
Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.  相似文献   

8.
Unpredictable or variable ecosystem recovery from disturbance presents a challenge to conservation, particularly as the scale of human disturbance continues to increase. Theory suggests land-cover and disturbance characteristics affect recovery, but individual studies of disturbance and recovery frequently struggle to uncover generalizable patterns because of high levels of site-specific variation. To understand how land-cover, disturbance type, and disturbance duration influence ecosystem recovery, we used studies documenting recovery of 50 streams to perform a global meta-analysis of stream recovery from disturbances that affect water quality (e.g., oil spill, fire, wastewater). We extracted upstream natural and urban land-cover percentages for each site and performed model selection and averaging to identify influences on recovery completeness. Most streams improved following the end of a disturbance (median 240% of disturbed condition) but did not recover fully to baseline predisturbance condition within the studied period (median study period 2 years; median recovery 60% of baseline). Scale of disturbance in time and space did not predict recovery, but sites with higher percentages of upstream natural land cover had less complete recovery relative to sites with more urban or agricultural cover, possibly due to higher baseline conditions in these streams. Our findings suggest impacts to systems with low anthropogenic stress may be more irreversible than impacts to already modified systems. We call for more long-term evaluations of ecosystem response to disturbance and the inclusion of regional references and predisturbance reference conditions for comparison. A more thorough understanding of the role of the surrounding landscape in shaping stream response to disturbance can help managers calibrate expectations for recovery and prioritize protection.  相似文献   

9.
完善我国流域生态补偿制度的思考——以东江流域为例   总被引:3,自引:0,他引:3  
吴箐  汪金武 《生态环境》2010,19(3):751-756
上下游对流域生态资源保护做出的贡献与生态利益享有的不平等导致区域间社会经济差距的扩大,需要通过生态补偿制度的建立和完善来实现区域统筹和谐发展,但我国现行生态补偿制度由于行政区界限制、相关法规建设不完善、补偿方式较单一、补偿标准测算困难等原因面临不少问题和困境。以东江流域现行生态补偿措施为视点,分析了当前生态补偿研究实践中存在的问题;进而以此为基点根据流域生态系统的连贯性与人类政治结构分割性之间的矛盾进行反思,提出打破流域行政区界限制,统筹构建流域“生态共同体”的理念;并在此理念指导下,提出采取“政府主导、市场运作”策略。即在明确界定流域范围后,首先由“政府主导”开展全流域综合规划、建立和完善省内流域统管机制、跨省流域生态共享共建统筹协商机制;其次以水质水量、出售许可交易权方式测算“生态共同体”之间核算补偿资金,并结合“市场运作”实施多样化并进补偿方式;同时建立流域生态补偿奖惩制度并将其纳入“生态共同体”干部绩效考核体系,构建流域补偿的长效机制,完善我国流域生态补偿制度。  相似文献   

10.
三江源区不同建植年代人工草地群落演替与土壤养分变化   总被引:6,自引:0,他引:6  
研究了了三源区不同建植期人工修复草地在不同演替阶段毒杂草[主要是甘肃马先蒿(Pedicularis kansuensis)]的入侵规律、数量特征,植物群落物种组成、生物苗和草地质最以及土壤养分、微生物活性的变化规律.结果表明,不同建植期人工修复草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异.随着演替时间的推移,人工草地群落盖度、高度、物种数、生物最和多样性指数均表现出"V"字型变化规律,杂类草--甘肃马先蒿的数量特征变化尤为明显,在4 a的人工草地群落中开始局部入侵,在5~6 a的人工草地群落中大面积入侵,其入侵速度、入侵面积达到高峰期.土壤的含水量、容重、土壤中有机质、氮素和磷素在演替过程(7 a、9 a草地)中逐渐降低,到一定时期又逐步增加;随着演替的进行,不同建植期人工草地的土壤微牛物生物量碳和酶活性均呈"V"字型,变化.对于退化生态系统的恢复首先是植被恢复,其次是土壤肥力的恢复.土壤有机质等养分的积累、微生物活性的改善不仅能使土壤-植物复合系统的功能得以恢复,同时也能促进物种多样性的形成,有利于人工草地群落稳定性的提高.在试验区尽管植被恢复演替进行得比较缓慢,但从土壤发展的角度看,仍属进展演替.所以,在退化高寒草甸的恢复过程中,若降低和有效控制外界的干扰(如围栏封育),可为退化草地恢复提供繁殖体与土壤环境,实现人工草地逐步向恢复(正向)演替进行.图3表6参34  相似文献   

11.
《Ecological modelling》2007,200(1-2):45-58
Effective forest ecosystem-based management requires a thorough understanding of the interactions between anthropogenic and natural disturbance processes over larger spatial and temporal scales than stands and rotation ages. Because harvesting does not preclude fire, it is important to evaluate the combined effects of harvesting and fire on forest age structure, a coarse indicator of forest ecosystem state. We performed a sensitivity analysis of landscape scale effects of forest management (strategy, harvest rate and access cost) and fire regime (fire return interval and extent) in terms of combined impacts on forest stand age-class structure on a study area of 3.5 million hectares of boreal forest of Québec. A series of scenarios were simulated over 500 years and replicated 30 times using a previously reported spatially explicit landscape model. Within the parameter space of our sensitivity analysis, we found that harvest rate, fire return interval and management strategy were the most significant parameters affecting stand age-class distribution across the landscape. The former are not so surprising, given that they combine to produce an overall disturbance rate, but the latter shows that the resulting impact on age-class structure can be influenced to some degree through management objectives. A harvesting strategy of clearcutting for sustained timber supply, using a harvest rotation based on minimum merchantable age (approximately 100 years in this analysis), creates a trend for the stand age-class distribution away from the expected range of natural variation for the study area. Within the scope of our simulations, alternative management strategies with extended harvest rotation age proved the most robust forest management practice to absorb variations in fire regime.  相似文献   

12.
《Ecological modelling》2003,165(1):49-77
New models of Lake Ladoga ecosystem and the results of modeling are presented. In the first part the model of phytoplankton succession in the process of anthropogenic eutrophication of the lake is considered under the evolution of the phosphorus loading. The still continued anthropogenic eutrophication of the lake started in 1962 when the phosphorus load began to increase. Since 1962 during the evolution of the lake’s state from oligotrophic to developed mezotrophic one, the structure of phytoplankton community dominating species was significantly changed as well as its total productivity. The system state in the model is described by 14 parameters: nine phytoplankton complexes, zooplankton, dissolved organic matter, detritus, dissolved mineral phosphorus and dissolved oxygen. The number of parameters of this model is noticeably larger than that of previous models created by the authors. The relative dynamics of phytoplankton complexes in the lake’s ecosystem evolution was simulated by the new model. It is shown that the modeling results are adequately corresponding to the observation data. The results of phytoplankton structure modeling allow to estimate the impact of phytoplankton on the water quality as well as give the prediction of the lake’s ecosystem evolution with the changes of the phosphorus loading.  相似文献   

13.
Biodiversity and Ecosystem Function   总被引:2,自引:0,他引:2  
In at least some circumstances, biodiversity affects various ecosystem functions and the ways in which ecosystems respond to disturbance. Because these interactions occur at many spatial and temporal scales and throughout all levels of biological organization, it is difficult to decide where to focus attention on interactions between biodiversity and ecosystem function. The loci for initial attention is important for setting research priorities to understand these interactions further, for organizing known information to instruct the development of natural resource policies, and for identifying biodiversity conservation priorities. Holling (1992) argues that ecosystem behavior can be understood from a few dominating ecological processes that structure the ecosystem. In the temporal dimension, these key structuring processes dictate a few dominant temporal frequencies that drive other processes. Thus, the most effective strategy for studying interactions between biodiversity and ecosystem function is to focus on the key structuring processes at intermediate scales of space and time. Thereafter, other ecological conditions signify situations in which the interactions between biodiversity and ecosystem function are particularly strong: early to midsuccessional status, low soil fertility, intermediate levels of disturbance, biotic interactions only where there is collaborative indication of importance, invading species that differ significantly from native species in resource acquisition or utilization, and ecotones.  相似文献   

14.
Disturbance and landscape dynamics in a changing world   总被引:9,自引:0,他引:9  
Turner MG 《Ecology》2010,91(10):2833-2849
Disturbance regimes are changing rapidly, and the consequences of such changes for ecosystems and linked social-ecological systems will be profound. This paper synthesizes current understanding of disturbance with an emphasis on fundamental contributions to contemporary landscape and ecosystem ecology, then identifies future research priorities. Studies of disturbance led to insights about heterogeneity, scale, and thresholds in space and time and catalyzed new paradigms in ecology. Because they create vegetation patterns, disturbances also establish spatial patterns of many ecosystem processes on the landscape. Drivers of global change will produce new spatial patterns, altered disturbance regimes, novel trajectories of change, and surprises. Future disturbances will continue to provide valuable opportunities for studying pattern-process interactions. Changing disturbance regimes will produce acute changes in ecosystems and ecosystem services over the short (years to decades) and long-term (centuries and beyond). Future research should address questions related to (1) disturbances as catalysts of rapid ecological change, (2) interactions among disturbances, (3) relationships between disturbance and society, especially the intersection of land use and disturbance, and (4) feedbacks from disturbance to other global drivers. Ecologists should make a renewed and concerted effort to understand and anticipate the causes and consequences of changing disturbance regimes.  相似文献   

15.
Cavaleri MA  Sack L 《Ecology》2010,91(9):2705-2715
Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.  相似文献   

16.
This study aims to reveal whether complexity, namely, community and trophic structure, of chronically stressed soil systems is at increased risk or remains stable when confronted with a subsequent disturbance. Therefore, we focused on a grassland with a history of four centuries of patchy contamination. Nematodes were used as model organisms because they are an abundant and trophically diverse group and representative of the soil food web and ecosystem complexity. In a field survey, a relationship between contaminants and community structures was established. Following, two groups of soil mesocosms from the field that differed in contamination level were exposed to different disturbance regimes, namely, to the contaminant zinc and a heat shock. The zinc treatment revealed that community structure is stable, irrespective of soil contamination levels. This implies that centuries of exposure to contamination led to adaptation of the soil nematode community irrespective of the patchy distribution of contaminants. In contrast, the heat shock had adverse effects on species richness in the highly contaminated soils only. The total nematode biomass was lower in the highly contaminated field samples; however, the biomass was not affected by zinc and heat treatments of the mesocosms. This means that density compensation occurred rapidly, i.e., tolerant species quickly replaced sensitive species. Our results support the hypothesis that the history of contamination and the type of disturbance determine the response of communities. Despite that ecosystems may be exposed for centuries to contamination and communities show adaptation, biodiversity in highly contaminated sites is at increased risk when exposed to a different disturbance regime. We discuss how the loss of higher trophic levels from the entire system, such as represented by carnivorous nematodes after the heat shock, accompanied by local biodiversity loss at highly contaminated sites, may result in detrimental effects on ecosystem functions.  相似文献   

17.
Jablonski D  Sepkoski JJ 《Ecology》1996,77(5):1367-1378
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.  相似文献   

18.
Spatial synchrony, defined as the correlated fluctuations in abundance of spatially separated populations, can be caused by regional fluctuations in natural and anthropogenic environmental population drivers. Investigations into the geography of synchrony can provide useful insight to inform conservation planning efforts by revealing regions of common population drivers and metapopulation extinction vulnerability. We examined the geography of spatial synchrony and decadal changes in these patterns for grassland birds in the United States and Canada, which are experiencing widespread and persistent population declines. We used Bayesian hierarchical models and over 50 years of abundance data from the North American Breeding Bird Survey to generate population indices within a 2° latitude by 2° longitude grid. We computed and mapped mean local spatial synchrony for each cell (mean detrended correlation of the index among neighboring cells), along with associated uncertainty, for 19 species in 2, 26-year periods, 1968–1993 and 1994–2019. Grassland birds were predicted to increase in spatial synchrony where agricultural intensification, climate change, or interactions between the 2 increased. We found no evidence of an overall increase in synchrony among grassland bird species. However, based on the geography of these changes, there was considerable spatial heterogeneity within species. Averaging across species, we identified clusters of increasing spatial synchrony in the Prairie Pothole and Shortgrass Prairie regions and a region of decreasing spatial synchrony in the eastern United States. Our approach has the potential to inform continental-scale conservation planning by adding an additional layer of relevant information to species status assessments and spatial prioritization of policy and management actions. Our work adds to a growing literature suggesting that global change may result in shifting patterns of spatial synchrony in population dynamics across taxa with broad implications for biodiversity conservation.  相似文献   

19.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   

20.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号