首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
杭甬地区大气中含碳气溶胶特征及来源分析   总被引:3,自引:3,他引:0  
为了研究杭甬地区大气气溶胶中含碳气溶胶的季节性变化和它们的来源,于2014年12月至2015年11月收集了杭州和宁波2个城市中4个采样点的PM_(2.5)样品,利用碳热光学分析仪测定了样品中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度.在此基础上,估算了含碳气溶胶总量(TCA)和二次有机碳(SOC)的浓度水平,根据OC与EC的相关性、比值和不同碳组分的特征,分析了主要来源.结果表明:(1)杭甬地区总碳(TC)年均浓度为(14.3±4.1)μg·m~(-3),占年均PM_(2.5)浓度的(26.2±6.5)%;OC和EC的年均浓度分别为(11.3±3.4)μg·m~(-3)和(3.0±0.9)μg·m~(-3).4季中,冬季TC浓度最高;(2)杭甬地区估算的TCA年均浓度为(25.6±7.5)μg·m~(-3),占PM_(2.5)的(42.2±10.0)%,SOC占OC年均值的(41.1±5.5)%;(3)杭甬地区年均OC/EC比值为4.7±1.7,落在汽车尾气排放,煤炭燃烧和生物燃料燃烧的区间内,说明这些排放源都是含碳气溶胶的主要来源.各个采样点在秋冬季都具有更高的char-EC/soot-EC比值,表明了这2个季节生物质燃烧活动的贡献也不容忽视.  相似文献   

2.
为了探究成都平原碳质气溶胶污染特征及来源,于德阳、成都和眉山三地采集了1 a的PM_(2.5)样品,利用光热透射法测量其有机碳(OC)和元素碳(EC). 3个点年均碳质气溶胶的质量浓度(μg·m~(-3))分别为眉山(OC:15. 8±9. 6,EC:6. 6±5. 3)成都(OC:13. 0±7. 5,EC:4. 7±3. 6)德阳(OC:9. 6±6. 1,EC:3. 4±2. 6),对应的总碳质气溶胶(TCA)在PM_(2.5)中的占比分别为36%、34%和30%.由EC示踪法估算获得二次有机碳(SOC)在OC中的占比分别为眉山38%、成都46%和德阳47%. OC和EC质量浓度季节变化显著,呈现出秋冬季高夏季低的特征,在2013年10月12~13日、12月2~7日和2014年1月中下旬出现峰值,同期气溶胶中K+质量浓度激增,说明这些污染过程中生物质燃烧有重要贡献. PMF模型对碳质气溶胶来源解析结果表明,该地区总碳(TC)的主要来源为生物质燃烧源(46%~56%)、二次有机气溶胶源(26%~38%)、机动车排放源(9%~12%)、扬尘源(3%~4%)、燃煤源(2%~3%)和工业源(1%~2%),生物质燃烧源全年范围内对TC有显著贡献,尤以秋冬两季贡献最高.  相似文献   

3.
为了获取机动车源尾气和主要民用燃料源燃烧过程排放的颗粒物中含碳气溶胶的排放特征,使用多功能便携式稀释通道采样器和Model 5L-NDIR型OC/EC分析仪,采集分析了典型机动车源(汽油车、轻柴油车、重柴油车)、民用煤(块煤和型煤)和生物质燃料(麦秆、木板、葡萄树树枝)的PM10和PM2.5样品中的有机碳(OC)和元素碳(EC).结果表明,不同排放源释放的PM10和PM2.5中含碳气溶胶的质量分数存在显著差异.总碳(TC)在不同源PM10和PM2.5中的质量分数范围分别为40.8%~68.5%和30.5%~70.9%,OC/EC范围分别为1.49~31.56和1.90~87.57.不同源产生的含碳气溶胶均以OC为主,OC在PM10和PM2.5中的质量分数范围分别为56.3%~97.0%和65.0%~98.7%.在PM10和PM2.5的含碳气溶胶中OC质量分数按照从高到低...  相似文献   

4.
2015年1月16~26日长江三角洲(以下简称长三角)地区出现了一次持续区域性重污染过程,为研究重污染过程期间含碳气溶胶的区域分布特征及其来源.使用中流量采样器分别对南京、苏州和临安1月13~28日PM2.5进行了连续采样,并使用Model 2001A热/光碳分析仪分析了样品中的有机碳(OC)和元素碳(EC)含量.结果表明:长江三角洲地区冬季重污染过程中以PM_(2.5)污染为主,南京、苏州、临安PM_(2.5)的平均浓度分别为176.84,176.65,158.07μg/m~3,是清洁天的1.91、2.01和2.97倍.含碳气溶胶是PM_(2.5)的重要组成部分,总碳(TC,TC=OC+EC)占PM_(2.5)的比例分别为南京(18%)、苏州(21%)、临安(23%).轻度污染天和中/重度污染天,长三角地区PM_(2.5)中OC的平均浓度分别为20.75,32.64μg/m~3,为清洁天的1.66和2.61倍;EC的平均浓度分别为5.41,8.87μg/m~3,为清洁天的2.06和3.37倍.污染过程中不同碳组分的变化特征不同.一次有机碳(POC)、二次有机碳(SOC)、焦炭(Char-EC)的浓度随着污染程度的加剧而不断上升;烟炱(Soot-EC)随着污染程度变化较小.4个采样时段中,OC、EC浓度峰值出现于15:00~20:40时段.污染期间,长三角地区含碳气溶胶的主要来源为燃煤和机动车尾气,同时还有部分生物质燃烧源的影响,柴油车尾气的影响较弱.清洁天,影响长三角地区的气团主要来自于海洋上空,气团较为清洁,碳气溶胶来源简单;污染天气团主要来自于我国西北地区及长三角周边省份,受到外来输送与本地源排放的影响,使得碳气溶胶来源变得相对复杂.  相似文献   

5.
郭森  王蕾  周盼  郭硕  秦伟  安塞  肖捷颖  刘娟  姬亚芹 《环境工程》2018,36(4):122-126
为明确石家庄市夏季道路尘中有机碳和元素碳污染特征及来源,用样方法采集市区4种不同类型共8条铺装道路尘样,处理后经热光碳分析仪测定有机碳(OC)和元素碳(EC)组分。结果表明:总碳(TC)在道路尘PM_(2.5)、PM_(10)中质量分数分别为129 465.2,103 911.4μg/g;PM_(2.5)和PM_(10)中OC和EC相关系数分别为0.94和0.86,可认为OC、EC来源基本一致;OC/EC均>2,表明存在二次有机碳(SOC)的贡献;通过OC/EC最小比值法估算得出SOC占PM_(2.5)和PM_(10)中OC总量的42.5%和32.8%,一次有机碳(POC)贡献较大;夏季道路积尘中的碳主要来自于汽、柴油车尾气排放、大气降尘中燃煤成分和生物质燃烧。  相似文献   

6.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

7.
2014年1月-2014年12月期间,在大连市对PM2.5的质量浓度和含碳气溶胶进行了在线连续观测,获得了不同季节的含碳气溶胶的变化特征.观测结果显示:大连市PM2.5中有机碳(OC)和元素碳(EC)的年平均质量浓度分别为6.9 μg/m3和2.9 μg/m3,OC和EC浓度之和占PM2.5的18%,表明碳质气溶胶是大连市大气细粒子中的重要组分.OC和EC的比值表明机动车尾气、燃煤排放和船舶排放是大连市PM2.5中OC和EC的主要来源.重污染过程期间OC/EC的比值和PM2.5的变化趋势呈负相关关系可以作为判定外来污染输送的一个重要指标.  相似文献   

8.
兰溪市PM2.5中有机物的组成特征、季节变化及来源研究   总被引:1,自引:0,他引:1  
为更好地理解我国中小城市地区大气细颗粒物的污染特征,利用大流量采样器采集了浙江中部典型内陆城市-兰溪市近郊和市区两个站点2016年四个季节的PM_(2.5)样品,测定了碳质气溶胶的含量,利用气相色谱/质谱联用仪(GC/MS)分析了正构烷烃、藿烷、多环芳烃和长链脂肪酸等弱极性有机物的组成.结果表明,兰溪PM_(2.5)中有机碳的年均浓度为9.7μg·m~(-3),有机物中正构烷烃、藿烷、多环芳烃和脂肪酸的年均浓度分别为40.8、2.0、21.0和168 ng·m~(-3).同系物分布特征表明,化石燃料燃烧是兰溪PM_(2.5)中正构烷烃的主要来源,但植物蜡也有重要贡献;藿烷的组成及其季节变化显示兰溪PM_(2.5)中的藿烷主要来源于机动车排放,但冬季存在明显的燃煤贡献;基于BeP/(BeP+BaP)、IcdP/(IcdP+Bg P)等特征比值分析,兰溪PM_(2.5)中的多环芳烃主要来源于机动车尾气和煤炭/生物质燃烧的混合贡献,冬季燃煤贡献较高;兰溪夏季多环芳烃的老化程度较低,表明兰溪夏季PM_(2.5)以本地排放新鲜颗粒为主,外来输送的影响较小;脂肪酸的浓度和组成说明餐饮排放对市区PM_(2.5)的影响较大.研究结果为大气PM_(2.5)的来源解析提供了重要的基础信息.  相似文献   

9.
基于广安市2017年6月-2018年5月逐日平均国控站点空气质量监测数据,该文对广安市PM_(2.5)组成特征及污染贡献源进行解析。结果表明,监测期间广安市PM_(2.5)主要成分为元素碳(30%)、有机碳(30%)和混合碳(12%);颗粒物首要污染源为燃煤(22%),工艺过程源(19%)、扬尘源(18%)和二次源(18%)贡献率也较高,机动车、生物质和其他源贡献率都较低;工业源(工艺过程和燃煤)、扬尘源和机动车为广安市主要污染来源,不同季节污染源贡献率有所不同,春季扬尘源贡献突出,秋季主要表现为扬尘源、工业源(工艺过程和燃煤)和机动车,夏季和冬季工业源(工艺过程和燃煤)贡献率突出,其次为扬尘源;工业源(工艺过程和燃煤)、机动车、扬尘源、生物质燃烧是春季PM_(2.5)浓度上升的主要原因;夏季则是工业源(工艺过程和燃煤)、机动车、扬尘源;秋季机动车是导致PM_(2.5)升高的主要原因;冬季工业源(工艺过程和燃煤)、扬尘源、生物质燃烧是PM_(2.5)浓度上升的主要原因;污染期间应重点管控工业源(工艺过程和燃煤)、扬尘源和机动车,春季和冬季还应加强生物质燃烧源控制。  相似文献   

10.
为研究鞍山市PM_(2.5)中碳组分的化学特征,于2014年7月和2015年1月在鞍山市建成区6个监测点位采集PM_(2.5)样品,并用热光碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过分析2个季节PM_(2.5)中OC和EC的化学特征、比值及其相关性,以及SOC的估算值,定性分析了鞍山市PM_(2.5)中碳质气溶胶的来源;利用因子分析法,进一步分析了其来源.结果表明,夏季和冬季PM_(2.5)的平均浓度分别为(53.4±18.0)和(124.9±60.1)μg/m3.夏季PM_(2.5)中OC和EC的质量浓度分别为(5.44±0.84)和(2.29±0.49)μg/m3;冬季PM_(2.5)中OC和EC的质量浓度分别为(21.47±12.45)和(4.68±1.79)μg/m3.夏季和冬季各点位的OC/EC值的变动范围分别为2.18~2.70和4.04~4.95.相比冬天,夏季OC和EC的相关性较强.夏季和冬季SOC的估算值分别为2.12,11.95μg/m3.鞍山市大气PM_(2.5)中碳组分主要来源于生物质燃烧源、燃煤源、汽车排放和道路扬尘源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号