首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
乳酸对铜绿微囊藻的抑藻效应及机理   总被引:1,自引:0,他引:1  
以铜绿微囊藻为实验对象,研究了乳酸对铜绿微囊藻的抑藻效果及可能的抑藻机理.结果表明乳酸对铜绿微囊藻的生长有很强的抑制作用,72h,除最低浓度实验组对铜绿微囊藻的抑制率为60%外,其余浓度实验组的抑制率均达到了80%以上;在乳酸胁迫下,藻液中核酸和蛋白质含量增加,电导率上升,细胞中丙二醛(MDA)和氧自由基(O2·)含量增加,超氧化物歧化酶(SOD)活性下降;透射电镜图片显示,细胞的超微结构发生了明显改变.推测乳酸可能的抑藻机理是改变了藻细胞膜的通透性及其细胞结构,降低了其抗氧化能力,最终使得藻细胞裂解死亡.  相似文献   

2.
为了探明双氧水(H2O2)和凤眼莲协同作用下去除蓝藻水华以及净化水质的效果,该文通过室内模拟实验分别研究了双氧水、凤眼莲及其组合处理对纯培养铜绿微囊藻的抑制作用和去除水体氮、磷的效果与主要机制。结果表明,H2O2处理组、凤眼莲处理组、H2O2+凤眼莲处理组对铜绿微囊藻(FACHB-7806)的抑制及对水质的改善效果存在显著差异,其中H2O2(15 mg/L)处理组短期抑藻效果最佳,48 h后叶绿素a浓度下降了69%,铜绿微囊藻光合系统Ⅱ的最大光量子产量(Fv/Fm)显著降低,4 h后Fv/Fm值趋于0,且48 h内无明显恢复,此后因H2O2完全分解而不再有抑藻效果,导致7 d后铜绿微囊藻的光合活性缓慢恢复;凤眼莲处理组48 h内对铜绿微囊藻光合活性无显著抑制效果,但7 d后铜绿微囊藻...  相似文献   

3.
枯草芽孢杆菌对铜绿微囊藻抑制效果的研究   总被引:1,自引:0,他引:1  
为探讨枯草芽孢杆菌(Bacillus subtilis)对铜绿微囊藻(Microcystis aeruginosa)的抑制效果,在实验室条件下,研究了枯草芽孢杆菌不同生长时期(延迟期、对数期、稳定期和衰亡期)无菌滤液对铜绿微囊藻生长的影响、枯草芽孢杆菌抑制铜绿微囊藻生长的作用方式以及无菌滤液影响下铜绿微囊藻丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性和光合色素含量的变化.结果显示:枯草芽孢杆菌对数期、稳定期和衰亡期滤液抑藻效果明显好于延迟期,作用第8d,对铜绿微囊藻的去除率分别达到81.19%、91.41%、91.82%;4个处理组铜绿微囊藻的叶绿素a含量均显著低于对照组.添加稳定期滤液后,铜绿微囊藻MDA含量显著升高,SOD活性先升高后降低;在对光合色素的影响中,类胡萝卜素受到的影响不如叶绿素a显著.结果表明,枯草芽孢杆菌对铜绿微囊藻的抑制效果是通过分泌胞外物质实现的,且分泌物具有很强的热稳定性.推测该胞外分泌物能够破坏光合色素,影响光合作用,抑制藻细胞的生长;同时抑制SOD活性,使细胞膜脂过氧化程度不断加深,进而破坏藻细胞的完整性,表现出对藻很强的抑制效果.  相似文献   

4.
水网藻种植水对铜绿微囊藻生长的抑制作用研究   总被引:4,自引:1,他引:4  
研究了不同浓度水网藻种植水对铜绿微囊藻生长的抑制作用以及对叶绿素a和抗氧化酶活性(SOD、CAT、POD)的影响.结果表明,水网藻种植水对铜绿微囊藻的抑制效果明显,20%~80%浓度的种植水第8 d的平均抑藻率达到98.9%,藻细胞几乎全部死亡.在种植水的作用下藻细胞叶绿素a含量迅速降低,叶绿素a遭到破坏.实验前2 d由于受到活性氧的刺激铜绿微囊藻抗氧化酶活性增加,且都高于对照组,随着抗氧化酶活性达到极限,活性氧开始积累并破坏细胞的正常代谢,抗氧化酶活性迅速降低,80%浓度的实验组至第8 d时SOD、CAT、POD活性分别仅为31、6、5 U.mg-1.水网藻种植水经过高温处理后对铜绿微囊藻基本没有抑制作用,说明种植水中的抑藻物质具有热不稳定性.  相似文献   

5.
针对蓝藻水华问题,选取壳聚糖纤维和芦荟大黄素为原材料,制备了负载芦荟大黄素的壳聚糖纤维(CS-AE纤维).研究了壳聚糖纤维对芦荟大黄素的吸附效果以及复合材料对铜绿微囊藻的生长抑制能力.结果表明,芦荟大黄素可以有效地负载到壳聚糖纤维上,吸附过程符合准二级动力学模型和Freundlich等温线模型,属于化学吸附.吸附平衡时间为240 min,最适吸附温度为30℃,芦荟大黄素的初始浓度为100mg·L-1时,实际吸附量为19.06 mg·g-1.抑藻实验表明,CS-AE纤维能够有效地抑制铜绿微囊藻的生长,当投加量为0.6 g·L-1时,第12 d的抑藻率可达77.6%.实验期间,处理组中藻细胞膜结构发生改变,丙二醛(MDA)含量显著增加;叶绿素a、类胡萝卜素和藻胆蛋白含量逐渐下降,其中对藻胆蛋白的抑制率显著高于对叶绿a和类胡萝卜素的抑制率.藻细胞的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性均呈先升高后降低的趋势;此外,CS-AE纤维能够有效去除藻毒素.综上推断,CS-AE纤维通过破坏铜绿微囊藻的细胞结构,光合系统,以及...  相似文献   

6.
菖蒲对铜绿微囊藻的化感作用   总被引:30,自引:0,他引:30       下载免费PDF全文
采用两厢培养池研究了菖蒲(Acoruscalamus)对铜绿微囊藻(Microcystisaeruginosa)的化感抑制作用.结果表明,在排除藻菌作用和营养竞争前提下,共培养条件下的菖蒲可抑制微囊藻的生长,使藻液光密度(OD680)降低;抑制效应取决于菖蒲和微囊藻之间的相对生物量,实验条件下100g菖蒲在初始藻液光密度为0.2时有最强抑藻效应;抑藻化感物质的释放与菖蒲根茎密切相关,根茎受损的菖蒲无抑藻效应;在抑藻过程中对藻细胞的生理指标分析表明,菖蒲的存在降低了藻细胞内的蛋白含量,使SOD、MDA和CAT等抗氧化系统酶的活性增加,化感物质造成活性氧的过量积累可能是微囊藻死亡的原因之一.  相似文献   

7.
桔皮水提液对铜绿微囊藻生长的抑制效果研究   总被引:9,自引:1,他引:8  
桔皮水提液能显著抑制铜绿微囊藻的生长,定性滤纸过滤,0.45 μm滤膜过滤和0.22 μm滤膜过滤及高温灭菌水提液的预处理操作对其抑藻效果无明显影响. 当桔皮(干质量)水提液投加质量浓度大于1.0 g/L时,培养10 d时对铜绿微囊藻生长的抑制率可超过90%,抑制率随桔皮水提液投加质量浓度的升高而增大;当桔皮水提液的投加质量浓度低于0.1 g/L时,抑藻效果不明显. 在长期(40 d)培养试验中,投加低质量浓度(小于1.0 g/L)桔皮水提液的试验组中,铜绿微囊藻在培养后期生长迅速,某些试验组中出现促进铜绿微囊藻生长的现象;投加高质量浓度(大于1.0 g/L)桔皮水提液的试验组中,培养40 d内均保持接近于100%的抑制率. 透析袋分离试验表明,具有抑藻活性的物质存在于分子量小于3 500的组分中. 由试验结果可推测,桔皮水提液中含有某种或某些物质,可对铜绿微囊藻的生长产生抑制作用,且这些物质经121 ℃高温处理30 min后仍保持抑藻活性. 该抑藻物质易于自然降解,在长期培养过程中,其抑藻效果会逐渐消失.   相似文献   

8.
加拿大一枝黄花提取物对铜绿微囊藻的抑制作用   总被引:2,自引:0,他引:2  
研究加拿大一枝黄花提取物对铜绿微囊藻的抑制效果,采用两种不同的有机溶剂(水、乙酸乙酯)及水蒸气蒸馏法(挥发油成分)提取加拿大一枝黄花中的抑藻活性物质并进行抑藻试验研究。结果表明三种提取物对铜绿微囊藻均具有较强的抑制作用,在试验设定浓度下,水浸提物在30 g/L时具有最高抑藻率89.89%,乙酸乙酯提取物在浓度为8 g/L时即达到60.88%的抑藻率,而挥发油成分在浓度为10 g/L时有最高抑藻率45.11%。研究表明,加拿大一枝黄花具有抑藻效果,其中乙酸乙酯提取物抑制效果最好,具有应用于水体富营养化的治理和开发新型抑藻剂的潜力。  相似文献   

9.
通过研究不同初始密度铜绿微囊藻与黄菖蒲共同培养的种植水对铜绿微囊藻生长特性的影响,分析了铜绿微囊藻胁迫对黄菖蒲化感作用的诱导效应。结果显示,初始藻密度分别为0,1.0×105,1.0×106和1.0×107 cell/mL时,相对应的黄菖蒲种植水对铜绿微囊藻的抑制率及铜绿微囊藻MDA浓度先逐渐增加然后降低;同时,铜绿微囊藻叶绿素a浓度呈现先降低后增加的趋势;各个处理组中,铜绿微囊藻SOD活性也表现出明显的差异,表明铜绿微囊藻胁迫对黄菖蒲的化感作用具有一定的诱导效应,具体表现为:一定范围内,铜绿微囊藻初始密度越高,其胁迫效应促使黄菖蒲释放越多的化感物质,导致其种植水化感抑藻能力增强,但是在铜绿微囊藻密度过高时,黄菖蒲种植水的化感抑藻能力开始降低。  相似文献   

10.
为有效利用农业废弃物稻草秸秆进行抑藻,本研究对不同稻草秸秆进行了特定方式的发酵,测定了发酵液对常见淡水藻类的化感效应,探讨了其中抑藻作用强的发酵液抑藻机理.结果表明:与普通稻草秸秆发酵液相比,水稻分蘖枝发酵液对铜绿微囊藻的抑制效果显著好于普通稻草秸秆发酵液(P<0.05),作用72h水稻分蘖枝发酵液抑制率为93.21%,168h为97.96%,而稻草秸秆发酵液120h抑制率为68.20%,168h抑制率反而显著下降,只有27.65%;前者Eh50为14.073h,后者为21.036h;水稻分蘖枝发酵液对蓝藻(铜绿微囊藻)和绿藻(蛋白核小球藻、斜生栅藻)3种淡水藻均有良好抑制作用,对铜绿微囊藻抑制作用最佳(P<0.05).在水稻分蘖枝发酵液胁迫下,铜绿微囊藻叶绿素a以及藻蓝蛋白(PC)和别藻蓝蛋白(APC)含量下降,藻细胞叶绿素自发荧光值持续降低,藻细胞结构破坏.推测水稻分蘖枝发酵液的抑藻机制之一是将藻细胞光合系统作为其攻击的靶点从而抑制藻类生长,并最终破坏细胞结构,引起细胞凋亡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号