首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diving behaviour of southern rockhopper penguins (Eudyptes c. chrysocome) was studied at two breeding sites in the Southwest Atlantic: the Falkland Islands and Staten Island, Argentina. Incubating and brooding birds were equipped with time-depth recorders to monitor their foraging activities. Rockhopper penguins from Staten Island started their breeding season about 3 weeks earlier than their conspecifics from the Falkland Islands. The foraging area used by incubating males from the Falkland Islands comprised about 150,000 km² to the northeast of the breeding site and was characterised by shelf and slope waters, whereas the foraging area of incubating males from Staten Island comprised 350,000 km² of oceanic waters to the southeast of the breeding site. A number of dive parameters were measured and compared between the four study groups: Incubating males and brooding females from the Falkland Islands, and incubating males and females from Staten Island. In all study groups, dive depth correlated positively to light intensity, dive duration and vertical velocity. However, significant differences between various diving parameters of the study groups were noted, not only in terms of diving performance, but also as regards diving efficiency (DE). A principal component analysis (PCA) on 16 variables revealed that 75% of the variance could be explained by only two principal components: diving pattern (PC1) and diving effort (PC2). PC1 indicated that the birds from Staten Island, both males and females, dived deeper, covered a greater vertical distance per hour and had higher ascent rates, but spent less time underwater and at the bottom of a dive, and had a lower DE than conspecifics from the Falkland Islands. PC2, which included the percentage of foraging dives, the number of dives per hour, dive duration, bottom time and descent rate, differed significantly between incubating males from the Falkland Islands and the other three groups, which were all very similar. Overall, the diving behaviour was notably similar to that of conspecifics from the Indian and Pacific Oceans. The implications of the results in terms of intra-specific adaptations as well as potential threats from human activities are discussed.  相似文献   

2.
The diving behaviour of king penguins (Aptenodytes patagonicus) was studied on the Falkland Islands, where a small population (ca. 300 fledglings year–1) is located at the geographical limit of their breeding range. King penguins rearing newly hatched chicks were equipped with time-depth recorders before leaving for sea. In total, 20,175 dives >3 m were recorded from 12 birds during 15 foraging trips with a mean duration of 5.7±2.3 days. The majority of the trips was directed up to 500 km to the northeast of the breeding colony in slope waters of, and oceanic waters beyond, the Patagonian shelf. Mean time spent underwater accounted for 42±9% of the foraging trip. Mean dive depth achieved was 55±16 m; maximum dive depth recorded was 343 m. Mean dive duration was 159±25 s; maximum dive duration was 480 s. The mean vertical distance covered was 140±65 km trip–1; and on average birds covered 25 km day–1. Synchronous diving behaviour was observed in two birds for a period of about 24 h after leaving the colony. Dive depth correlated positively with: (1) light intensity, (2) dive duration and (3) vertical velocities, thus confirming previous findings obtained from conspecifics at other breeding sites and indicating comparable diving behaviour. However, separation of dives according to their profile—V-, U-, or W-shaped—revealed significant differences between certain dive parameters. For a given depth range, bottom time was longer and vertical velocities higher in W-dives than in U-dives. This, together with a higher number of W-dives at dawn and dusk, suggests that foraging is more effective during W-dives than U-dives, and during twilight. These findings imply that king penguins have to make more complex decisions, individually and socially, on the performance of the subsequent dive than previously thought.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

4.
Penguins may exhibit plasticity in their diving and foraging behaviors in response to changes in prey availability. Chinstrap penguins are dependent predators of Antarctic krill in the Scotia Sea region, but krill populations have fluctuated in recent years. We examined the diet of chinstrap penguins at Livingston Island, South Shetland Islands, in relation to their diving and foraging behavior using time-depth recorders over six breeding seasons: 2002–2007. When krill were smaller, more chinstrap penguins consumed fish. In these years, chinstrap penguins often exhibited a shift to deep dives after sundown, and then resumed a shallower pattern at sunrise. These night dives were unexpectedly deep (up to 110 m) and mean night dive depths sometimes exceeded those from the daytime. The average size of krill in each year was negatively correlated to mean night dive depths and the proportion of foraging trips taken overnight. Based on these patterns, we suggest that when krill were small, penguins increasingly targeted myctophid fish. The average krill size was negatively correlated to the time chinstrap penguins spent foraging which suggests that foraging on smaller krill and fish incurred a cost: more time was spent at sea foraging.  相似文献   

5.
Chinstrap, Pygoscelis antarctica, and gentoo, P. papua, penguins are sympatric species that inhabit the Antarctic Peninsula. To evaluate differences in the foraging habitat of these two species, we recorded their foraging locations and diving behavior using recently developed GPS-depth data loggers. The study was conducted on King George Island, Antarctica during the chick-guarding period of both species, from December 2006 to January 2007. The area used for foraging, estimated as the 95% kernel density of dive (>5 m) locations, overlapped partially between the two species (26.4 and 68.5% of the area overlapped for chinstrap and gentoo penguins, respectively). However, the core foraging area, estimated as the 50% kernel density, was mostly separate (12.8 and 25.0% of the area overlapped for chinstrap and gentoo penguins, respectively). Chinstrap penguins tended to use off-shelf (water depth > 200 m) regions (77% of the locations for dives >5 m), whereas gentoo penguins mainly used on-shelf (water depth < 200 m) areas (71% of dive locations). The data on foraging locations, diving behavior, and bathymetry indicated that gentoo penguins often performed benthic dives (28% of dives >5 m), whereas chinstrap penguins almost always used the epipelagic/mid-water layer (96% of dives >5 m). Diving parameters such as diving bottom duration or diving efficiency differed between the species, reflecting differences in the use of foraging habitat. The diving parameters also suggested that the on-shelf benthic layer was profitable foraging habitat for gentoo penguins. Conversely, the relationship between trip duration, date, and stomach content mass suggested that the chinstrap penguins went further from the colony to forage as the season progressed, possibly reflecting a reduction in prey availability near the colony. Our results suggest that chinstrap and gentoo penguins segregated their foraging habitat in the Antarctic coastal marine environment, possibly due to inter- and intra-specific competition for common prey resources.  相似文献   

6.
Contrasting conditions at-sea are likely to affect the foraging behaviour of seabirds. However, the effect of season on the dive parameters of penguins is poorly known. We report here on an extensive study of the diving behaviour of king penguins (Aptenodytes patagonicus) over the bird's complete annual cycle at the Crozet Islands. Time-depth recorders were used to record dive duration, bottom duration, post-dive interval, ascent rate and descent rate in breeding adults during different seasons in 1995 and 1996. Seasons included summer (n=6, incubation; n=6, chick brooding), autumn and winter (n=5 and n=3, respectively, chick at the crèche stage), and spring (n=4, birds at the post-moult stage). In all seasons dive duration increased with dive depth, but, for a given depth, dives were longer in winter (6.8 min when averaged over the 100-210 m depth layer) than in spring (4.6 min) and summer (4.4 min). The time spent at the bottom of the dives, which probably represents a substantial part of the feeding time, was much longer in winter (2.5 min per dive for dives over the 100-210 m layer) than during other seasons (1.0-1.4 min), i.e. there was a 2.5-fold augmentation for similar diving depths. Ascent and descent rates increased with increasing dive depth, but no difference in the relationships between rates of ascent and descent and dive depth was found among seasons. Furthermore, for all dive depths, ascent and descent rates were independent of the bottom duration. In all seasons post-dive intervals increased with dive duration and with dive depth, but they were longer in spring (2.3 min for dives over the 100-210 m layer) and summer than in autumn and winter (1.6-1.8 min). The diving efficiency decreased with increasing dive depth and was higher in autumn and winter (0.22-0.29) than in summer and spring (0.15-0.18). The large increase in bottom and dive duration from spring to winter is in agreement with the seasonal drop in prey density, with penguins spending more time searching for prey. In contrast, the consistency of the vertical velocity during contrasting conditions at-sea suggests that the transit time to depth is an important component of the foraging behaviour (scanning of the water column) that is independent of the prey availability. The time budget of the penguins during diving in a fluctuating environment appears to vary primarily during the bottom phase of the dives, with bottom duration increasing with diminishing prey supplies, while post-dive intervals shorten in the same time.  相似文献   

7.
The diet of the Humboldt penguin (Spheniscus humboldti) was examined and compared in two colonies in Chile. Field work was conducted on Pan de Azúcar Island in northern Chile in the breeding season 1998/1999 and on the Puñihuil Islands in southern Chile over two successive breeding seasons during 1997/1998 and 1998/1999. Penguin diet was studied by stomach-pumping birds and analysed by species composition, size and mass of prey. Fish were the dominant prey item at both sites, the contribution of cephalopods and crustaceans varying between sites. The fish prey consisted predominantly of school fish, but there were clear latitudinal differences in fish prey taken. Penguins in the northern colony consumed primarily garfish (Scomberesox saurus), while birds at the southern colony of Puñihuil fed primarily on anchovy (Engraulis ringens), Araucanian herring (Strangomera bentincki) and silverside (Odontesthes regia). The results showed significant differences in terms of numbers of fish taken between the two breeding seasons at Puñihuil. In 1997/1998 penguins consumed almost exclusively anchovy, while they fed primarily on silversides in the successive year. Almost all prey, except stomatopods, were characterised as being pelagic species that occur in relatively inshore water, consistent with the foraging behaviour of Humboldt penguins. The dependence of Humboldt penguins on commercially exploited, schooling prey species makes the species particularly susceptible to changes in prey stocks, due to non-sustainable fisheries management.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

8.
Little Penguins, Eudyptula minor, breed in several small colonies in New Zealand and Australia. In this study, we compare the birds’ diving performances at different sites situated throughout their breeding range. Environmental conditions and breeding success vary drastically amongst colonies, but all birds feed on similar types of prey and face similar limitations on their foraging range. We examined several diving parameters and calculated the proportion of foraging zone available during breeding to examine whether oceanographic and geographic factors in the foraging zone can explain variations in diving behaviour and fledging success among the different colonies. In colonies with high fledging success, Penguin Island and Oamaru, penguins made shallow dives <50 m depth and had lower diving effort. More than 90% of the foraging zone was in waters <50 m depth in these colonies. Motuara Island also has shallow waters with 95% <50 m depth, but the fledging success was low. Phillip Island has only 42% of waters <50 m and comparatively low fledging success. Thus, penguins dived deeper and showed a higher diving effort in colonies with lower fledging success (Motuara Island and Phillip Island), indicating that they were disadvantaged compared to conspecifics from other colonies that dived shallower and with a lesser diving effort. We concluded that bathymetry is an important factor, but not the only one, which influences fledging success.  相似文献   

9.
The foraging ecology of seven Gentoo penguins,Pygoscelis papua, breeding at Ardley Island, Antarctica was studied using animal-attached devices which recorded swimming speed, heading and dive depth. Reconstruction of the foraging routes by vectorial analysis of the data indicated that at no time did the birds forage on the sea bed. Swimming speed was relatively constant at 1.7 m s-1, but rates of descent and ascent in the water column during dives increased with increasing maximum dive depth due to changes in descent and ascent angles. The amount of time spent discending and ascending in the water column increased with maximum dive depth as did the duration spent at the point of maximum depth. Dive profiles were essentially either U-shaped (flat-bottomed dives), or V-shaped (bounce dives). Development of a model based on simple probability theory indicated that the optimal dive profile to maximize the chances of prey acquisition depends on vertical prey distribution and on the visual capabilities of the birds with respect to descent and ascent angles.  相似文献   

10.
External devices on penguins: how important is shape?   总被引:4,自引:0,他引:4  
Many researchers use external recording or transmitting devices to elucidate the marine ecology of fish, mammals and birds. Deleterious effects of these instruments on the parameters researchers wish to measure are hardly ever discussed in the literature. Research has shown that, in penguins, volume and cross-sectional area of instruments negatively correlate with swimming speed. dive depth and breeding success, and that device colour affects bird behaviour. Here, a large (200 g, cross-sectional area 2100 mm2) streamlined device was attached to the lower back of Adélie penguins (Pygoscelis adeliae on Ardley Island, South Shetland Island in 1992) and its effects on bird swimming speed and energetics were measured in a water canal in Antarctica. Although the device was 10.5% of penguin cross-sectional area, swimming speed was reduced by only 8.3% and mean power input increased by only 5.6% while swimming. Although our streamlined device was five times more voluminous than one of our older units, the effect on swimming energetics could be reduced by 87%.  相似文献   

11.
In diving seabirds, sexual dimorphism in size often results in sex-related differences of foraging patterns. Previous research on Magellanic penguins, conducted during the breeding season, failed to reveal consistent differences between the sexes on foraging behavior, despite sexual dimorphism. In this paper, we tested the hypothesis that male and female Magellanic penguins differ in diet and foraging patterns during the non-breeding period when the constraints imposed by chick rearing activities vanish. We used stable isotope ratios of carbon and nitrogen in feather and bone to characterize the diet and foraging patterns of male and female penguins in the South Atlantic at the beginning of the 2009–2010 and 2010–2011 post-breeding seasons (feathers) and over several consecutive breeding and migratory seasons (bone). The mean δ13C and δ15N values of feathers showed no differences between the sexes in any of the three regions considered or in the diet composition between the sexes from identical breeding regions; however, Bayesian ellipses showed a higher isotopic niche width in males at the beginning of the post-breeding season. Stable isotope ratios in bone revealed the enrichment of males with δ13C compared with females across the three regions considered. Furthermore, the Bayesian ellipses were larger for males and encompassed those of females in two of the three regions analyzed. These results suggest a differential use of winter resources between the sexes, with males typically showing a larger diversity of foraging/migratory strategies. The results also show that dietary differences between male and female Magellanic penguins may occur once the constraints imposed by chick rearing activities cease at the beginning of the post-breeding season.  相似文献   

12.
The ontogeny of diving and foraging behavior of northern fur seal pups from a stable population on Bering Island, Russia, was recorded with animal-borne instruments during their first few months at sea, a critical period during their first year at sea. Thirty-five pups were instrumented with satellite-linked time-depth recorders and stomach temperature pills. Diving occurred predominantly at night with deeper and longer dives as the pups matured. Mean dive depths were correlated with lunar illumination, whereas mean dive durations were also correlated with time of day and sex. Foraging success did not differ between sexes, and there was no relationship between meal size (as indicated by feeding event duration and minimum stomach temperature) and lunar illumination fraction or maximum foraging depth. Although most pups were able to successfully forage within 3 days of starting their migration, the number of feeding events recorded each day remained low (mean 1.6 events day?1). There was no indication of an appreciable increase in meal size after the first 2 weeks of the migration despite an increase in dive frequency and depth. The results are consistent with observations that pups do not gain mass during their first year and emphasize the risk of starvation from infrequent foraging in cold water.  相似文献   

13.
We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.  相似文献   

14.
The reproductive ecology of two eastern Pacific zooxanthellate coral species was examined as part of a continuing series of studies relating bleaching/mortality events caused by the El Niño–Southern Oscillation disturbance, and is described for study sites in Costa Rica, Panamá, and the Galápagos Islands (Ecuador). This study deals with the sibling agariciid species Pavona varians and Pavona sp.a over a 13?yr period (1985 to 1997). Both Pavona species are broadcast-spawners with some gonochoric, but mostly sequential hermaphroditic colonies. Minimum colony sizes (and ages) at first reproduction were 5?cm (5?yr) and 3?cm (2 to 3?yr), respectively, in P. varians and Pavona sp.a. In the Panamá and Galápagos populations, gonochoric colonies spawn eggs or sperm at least monthly. Six fecundity attributes were not significantly different in the two species, but the eggs of P. varians are white to beige and positively buoyant, and those of Pavona sp.a are dark green and neutrally to negatively buoyant. Eggs of both species lack zooxanthellae. Both species are reproductively active year-round, with maximum activity in the dry season in the nonupwelling Gulf of Chiriquí, and in the wet season in the upwelling Gulf of Panamá. Spawning is predominantly during full moon, and possibly also at new moon at most study sites. Spawning in P. varians and Pavona sp.a is 12?h out of phase, with the former species spawning ~1?h before sunrise and the latter about 1?h after sunset. The fecundity of Pavona spp. at Caño and the Galápagos Islands was much greater (19?900 to 27?900 eggs cm?2?yr?1) than at all Panamá sites (14?800 to 19?800 eggs cm?2?yr?1). Intraspecific crosses in both species resulted in swimming planula larvae after 25 to 36?h. Recruitment of P. varians was highest in Panamá, moderate in Costa Rica, and nil in the Galápagos Islands, matching, respectively, the contributions of P. varians to the pre-1982/1983 El Niño coral-population abundances in these areas. Recruitment success of P. varians at Uva Island was significantly related to maximum monthly positive sea surface-temperature (SST) anomalies that occurred in the year preceding recruitment over the period 1982 to 1996; recruitment failed when SST anomalies exceeded 1.6 to 1.9?C° during the severe ENSO events of 1982/1983 and 1997/1998.  相似文献   

15.
Variable ocean conditions can greatly impact prey assemblages and predator foraging in marine ecosystems. Our goal was to better understand how a change in ocean conditions influenced dietary niche overlap among a suite of midtrophic-level predators. We examined the diets of three fishes and one seabird off central Oregon during two boreal summer upwelling periods with contrasting El Niño (2010) and La Niña (2011) conditions. We found greater niche specialization during El Niño and increased niche overlap during La Niña in both the nekton and micronekton diet components, especially in the larger, more offshore predators. However, only the two smaller, more nearshore predators exhibited interannual variation in diet composition. Concurrent trawl surveys confirmed that changes in components of predator diets reflected changes in the prey community. Using multiple predators across diverse taxa and life histories provided a comprehensive understanding of food-web dynamics during changing ocean conditions.  相似文献   

16.
Are penguins and seals in competition for Antarctic krill at South Georgia?   总被引:5,自引:0,他引:5  
The Antarctic fur seal (Arctocephalus gazella) and macaroni penguin (Eudyptes chrysolophus) are sympatric top predators that occur in the Southern Ocean around South Georgia where they are, respectively, the main mammal and bird consumers of Antarctic krill (Euphausia superba). In recent years the population of fur seals has increased, whereas that of macaroni penguins has declined. Both species feed on krill of similar size ranges, dive to similar depths and are restricted in their foraging range at least while provisioning their offspring. In this study we test the hypothesis that the increased fur seal population at South Georgia may have resulted in greater competition for the prey of macaroni penguins, leading to the decline in their population. We used: (1) satellite-tracking data to investigate the spatial separation of the Bird Island populations of these two species whilst at sea during the breeding seasons of 1999 and 2000 and (2) diet data to assess potential changes in their trophic niches between 1989 and 2000. Foraging ranges of the two species showed considerable overlap in both years, but the concentrations of foraging activity were significantly segregated spatially. The size of krill taken by both species was very similar, but over the last 12 years the prevalence of krill in their diets has diverged, with nowadays less krill in the diet of macaroni penguins than in that of Antarctic fur seals. Despite a significant degree of segregation in spatial resource use by the study populations, it is likely that the South Georgia populations of Antarctic fur seal and macaroni penguin exploit the same krill population during their breeding season. For explaining the opposing population trends of the two species, the relative contributions of independent differential response to interannual variation in krill availability and of interspecies competition cannot be resolved with available evidence. The likely competitive advantage of Antarctic fur seals will be enhanced as their population continues to increase, particularly in years of krill scarcity.  相似文献   

17.
In the heterogeneous marine environment, predators can increase foraging success by targeting physical oceanographic features, which often aggregate prey. For northern fur seals (Callorhinus ursinus), two prevalent oceanographic features characterize foraging areas during summer in the Bering Sea: a stable thermocline and a subsurface “cold pool”. The objective of this study was to examine the influence of these features on foraging behavior by equipping fur seals from St. Paul Island (Alaska, USA) with time-depth recorders that also measured water temperature. Foraging bout variables (e.g., mean dive depth and percent time diving in a bout) were compared with respect to subsurface thermal characteristics (thermocline presence and strength and cold pool presence). Over 74% of bouts occurred in association with strong thermoclines (temperature change > 5°C). Few differences were found for dive behavior in relation to the presence of a thermocline and the cold pool, but for epipelagic bouts, a strong thermocline resulted in increased bottom times, number of dive wiggles, and percent time diving when compared to moderate thermoclines. There was also a positive relationship between mean dive depth and thermocline depth. The combination of increasing foraging effort in areas with strong thermoclines and diving to depths closely related to the thermocline indicates this feature is important foraging habitat for northern fur seals and may act to concentrate prey and increase foraging success. By recognizing the environmental features northern fur seals use to find prey, managers will be better equipped to identify and protect foraging habitat that is important to northern fur seals, and possibly other marine predators in the Bering Sea.  相似文献   

18.
•Strong ENSO influence on AOD is found in southern China region. •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China. •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase. •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020. •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020). Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.  相似文献   

19.
Knowledge on how divers exploit the water column vertically in relation to water depth is crucial to our understanding of their ecology and to their subsequent conservation. However, information is still lacking for the smaller-bodied species, due mostly to size constraints of data-loggers. Here, we report the diving behaviour of a flying diving seabird, the Cape Cormorant Phalacrocorax capensis, weighing 1.0–1.4 kg. Results were obtained by simultaneously deploying small, high resolution and high sampling frequency GPS and time-depth loggers on birds breeding on islands off Western South Africa (34°S, 18°E) in 2008. In all, dive category was assigned to all dives performed by 29 birds. Pelagic dives occurred almost as frequently as benthic dives. Pelagic dives were shallow (mean: 5 m) and took place over seafloors 5–100 m deep. Benthic dives were deeper, occurring on seafloors mainly 10–30 m deep. Dive shape was linked to dive category in only 60% of dives, while the descent rate, ascent rate and bottom duration/dive duration ratio of a dive best explained its dive category. This shows that only the concomitant use of tracking and depth tags can adequately classify diving strategies in a diver like the Cape Cormorant. Diet was mainly Cape Anchovy Engraulis encrasicolis, suggesting that birds probably displayed two contrasted strategies for capturing the same prey. Flexible foraging techniques represent an important key to survival inside the highly productive but heterogeneous Benguela upwelling ecosystem.  相似文献   

20.
Changes in sea-ice conditions can affect locomotion on land, diving behavior, and corresponding foraging success of penguins. In this study, locomotion on land and diving behavior were compared between early and late stages of the guard phase with different sea-ice conditions using miniaturized time-depth-acceleration data loggers for Adélie penguins Pygoscelis adeliae from 18 December 2001 to 11 January 2002 in Dumont d’Urville, Adélie Land (66.7°S, 140.0°E), Antarctica. Differences were found between early and late stages in the ratio of walking vs. tobogganing, proportion of time spent diving, diving depth as well as in the rate of parental tissue accumulation. In contrast, trip duration, distance traveled on land, and meal delivery rate to chicks did not differ between the stages. This study suggests that physical changes in sea-ice during the penguins’ chick-rearing period may affect certain on-land and/or at-sea behaviors which, in turn, may affect how resources are allocated to self-maintenance or chick-provisioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号