首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
以吡啶和葡萄糖为燃料的MFC产电特性研究   总被引:1,自引:0,他引:1  
不同类型的有机物对MFC的产电性能有不同的影响,通过构建填料型MFC,以吡啶和葡萄糖为混合燃料,以铁氰化钾为电子受体,对有机物在MFC中的降解以及产电性进行研究.结果表明,外阻为1 000Ω的条件下,MFC的最大输出电压随着葡萄糖浓度的降低而降低,当吡啶初始浓度为500 mg/L,葡萄糖浓度分别为500、250、100 mg/L时,运行周期逐渐缩短,分别为49.5、25.7、25.2 h;最大体积功率密度为48.5、36.2、15.2 W/m3,最高电压为623 mV.MFC可实现对吡啶的高效降解,24h内吡啶去除率高达95%,但葡萄糖的浓度对吡啶的降解速率影响不大;高浓度吡啶存在的条件下对MFC利用葡萄糖产电的性能影响不大.利用500 mg/L单一吡啶作为MFC的燃料时,无明显产电现象.MFC利用吡啶和葡萄糖作为混合燃料时,可以在实现吡啶降解的同时稳定地向外输出电能.  相似文献   

2.
降解喹啉的微生物燃料电池的产电特性研究   总被引:6,自引:2,他引:4  
通过构建双极室微生物燃料电池(Microbial fuel cell,MFC),对喹啉的降解及MFC的产电性能进行了研究.试验结果表明,当喹啉初始浓度为500 mg·L-1,葡萄糖与喹啉浓度之比为1:1,3:5,1:5时,MFC的最大输出电压分别为558 mV、469 mV、328 mV,运行周期分别为56.4 h、70h、82.5 h;最大功率密度分别为173 mW·m-2、122 mW·m-2、60 mW·m-2(按阳极截面积计算)或者35 W·m-3、24 W·m-3、12 W·m-3(按阳极室有效容积计算).MFC可实现对喹啉的高效降解,但葡萄糖的浓度对喹啉的降解速率有较大影响.当葡萄糖浓度分别为500 mg.L-1、300mg·L-1和100 mg·L-1时,使500 mg·L-1喹啉完全降解的时间分别为6 h、24 h和72 h.MFC闭路条件下对喹啉的降解速率高于开路厌氧条件下的喹啉降解速率约10%.MFC对喹啉的降解与产电速率之间存在差距,喹啉被快速降解至较低浓度(<5rag·L-1)后,MFC的产电性能才达到最优.MFC以用喹啉和葡萄糖作为混合燃料时,可以在实现高效降解喹啉的同时可稳定地向外输出电能,这为杂环芳烃类难降解有机物的高效低耗处理提供了新的途径.  相似文献   

3.
纯菌株与混合菌株在MFC中降解喹啉及产电性能的研究   总被引:1,自引:3,他引:1  
微生物燃料电池(microbial fuel cell,MFC)阳极微生物菌群组成与MFC产电性能有重要关系.从稳定运行了210 d以上,以200 mg.L-1喹啉为燃料的MFC阳极室分离提纯出4株兼性厌氧菌Q1、b、c和d,分别代表原MFC中所有4类不同菌落形态的可培养菌.16S rDNA序列分析结果表明,菌株Q1、c和d属于假单胞菌属(Pseudomonas sp.),菌株b属于伯克霍尔德菌属(Burkholderia sp.).通过构建双室MFC,以200 mg.L-1喹啉和300 mg.L-1葡萄糖为混合燃料,以铁氰化钾为电子受体测定各菌株产电能力,结果表明菌株b、c和d均为非产电菌.产电菌Q1与非产电菌b、c、d复合产电电荷量依次为3.00、3.57和5.13C,库仑效率依次为3.85%、4.59%和6.58%,产电菌与非产电菌对燃料的降解利用存在竞争关系,使得复合菌产电能力比产电菌Q1单独时的产电能力差.在MFC中,非产电菌与产电菌复合产电时24h内对喹啉的去除率均可以达到100%,降解喹啉效果优于4株菌单独构建的MFC,即混合菌更有利于利用复杂碳源.GC/MS的测定结果表明,产电菌株Q1构建的纯菌MFC和原混合菌MFC周期结束时出水中存在的喹啉代谢产物均为2-羟基喹啉和苯酚.  相似文献   

4.
微生物燃料电池(Microbial fuel cell,MFC)阳极微生物的种类和作用机制对MFC的产电性能有着重要影响.从稳定运行了210d,以200mg·mL-1喹啉为燃料的MFC阳极室分离得到一株革兰氏阴性菌,命名为Q1,其16S rRNA基因序列与Pseudomonas citronellolisDSM50332T的同源性为96.9%,属于假单胞菌属(Pseudomonassp.).循环伏安法及构建纯菌MFC方法的测定结果均表明Q1具电化学活性.菌株Q1能利用单一喹啉或喹啉和葡萄糖混合燃料产电.在本试验所用浓度范围内,增加葡萄糖浓度,菌株Q1对应的最高输出电压增加,增加喹啉浓度菌株Q1的产电性能则降低,研究表明,菌株Q1库仑量和库仑效率达到最高时(分别为18.65C和36.56%),存在一个最佳喹啉与葡萄糖浓度比1∶3.在MFC中喹啉的降解效果优于普通厌氧培养,葡萄糖对菌株Q1降解喹啉有促进作用,以喹啉和葡萄糖为混合燃料24h对喹啉的去除率达99.53%,优于以单一喹啉为燃料的情况.循环伏安法和不同更换基质方式试验表明,附着在电极上的菌株Q1对产电起主要作用,Q1的溶解态代谢产物对产电过程起电子介体的作用.  相似文献   

5.
微生物燃料电池(MFC)芯片因具有体积小、运行条件温和、产电稳定等优点而有可能成为一种新型的野外水环境监测系统中传感器供能方式.但目前采用纯菌种及贵重金属阳极构建的MFC芯片,不仅成本较高且纯菌种在复杂环境条件下不易存活和保持稳定.因此,本文通过采用混合菌群接种,以活性炭为阳极,构建了阳极体积为50μL的MFC芯片,发现其稳定运行最大输出电流为3.5μA,平均运行周期为8.0 h,最大输出功率约为160 nW,最大功率密度为10.2 mW·m-2.EIS分析结果表明,MFC芯片的总内阻约为35.6 kΩ,其中,阴阳极内阻占主要部分.本研究制备的MFC芯片产电性能达到了同类采用纯菌株及Au作阳极的MFC芯片的性能,表明采用低成本材料为阳极,接种混合菌液的MFC芯片是完全可行的.  相似文献   

6.
多环芳烃是我国近岸海域水体和沉积物中需要优先控制的首位有机污染物,喹啉是典型的含氮杂环芳烃,具有较大的毒性、致畸性和潜在的致癌作用。该研究利用填料型MFC对单一喹啉为燃料的产电性能进行了研究。经过6个月利用喹啉和葡萄糖作混合燃料的驯化,MFC中的阳极群落发生了改变,可以利用单一喹啉进行产电,以200 mg/L喹啉为燃料时的最大体积功率密度为2.7 W/m3。在没有外加葡萄糖可能带来的协同共代谢作用下,利用单一喹啉做燃料时,对喹啉在MFC中的降解途径进行了研究。实验结果表明,以喹啉为燃料时,MFC可以在不利用有机物本身作为电子受体的作用下,通过外电路的电子传递完成电子从阳极到阴极的传递而达到相同的目的。  相似文献   

7.
以苯胺和葡萄糖为燃料的微生物燃料电池的产电特性研究   总被引:2,自引:0,他引:2  
通过构建空气阴极型双室微生物燃料电池(Microbial FueI Cell,MFC),并以苯胺和葡萄糖为燃料,研究了MFC对苯胺的降解特性及MFC 的产电性能.结果表明,在1000Ω电阻下,500mg·L-1葡萄糖为单一燃料时,MFC的最大输出电压为440mV,最大输出功率密度为215mw·m-2.当苯胺的初始浓度为...  相似文献   

8.
通过构建双极室微生物燃料电池(microbial fuel cell,MFC),以铁氰化钾溶液为阴极电子受体,以硝基苯(nitrobenzene,NB)和葡萄糖为混合燃料,研究MFC的产电特性和NB的降解情况.结果表明,在外阻为1000Ω的条件下,随着NB初始浓度的增加,双极室MFC的产电特性明显受到抑制.当葡萄糖浓度为1000mg/L,NB初始浓度分别为0、50、150、250mg/L时,MFC的运行周期逐渐缩短,分别为55.7、51.6、45.9、32.2h;最大输出电压分别为670、597、507、489mV;最大体积功率密度分别为28.57、20.42、9.29、8.47W/m3;电荷量分别为65.10、43.50、35.48、30.32C.MFC利用NB和葡萄糖为混合燃料,可以在稳定地输出电能的同时实现有机物高效降解,MFC对NB去除率高达100%,对COD的去除率达到87%~98%.但以250mg/LNB为单一燃料时,MFC无明显产电现象.DGGE图谱表明NB的加入改变了MFC阳极电极上微生物的群落结构.  相似文献   

9.
以吲哚为燃料的微生物燃料电池降解和产电特性   总被引:3,自引:1,他引:3       下载免费PDF全文
以铁氰化钾为电子受体,在两极阴阳室内使用碳毛刷纤维为电极材料构建了循环式微生物燃料电池(MFC),研究了以吲哚为单一燃料和吲哚+葡萄糖为混合燃料条件下MFC的产电特性以及对吲哚和COD的去除效果.结果表明,以1000mg/L葡萄糖+250mg/L吲哚为混合燃料时,MFC的最高电压和最大功率密度分别为660mV和51.2W/m3(阳极),MFC运行10h对吲哚和COD的去除率分别为100%和89.5%;分别以250,500mg/L吲哚为单一燃料时,MFC的平均最高电压分别为115,118mV,最大功率密度分别为2.1,2.3W/m3(阳极).在MFC中,250,500mg/L吲哚被完全降解的时间分别为6,30h.MFC能够利用吲哚为燃料,在实现高效降解吲哚的同时对外产生电能,可用于处理含有毒且难降解有机物的焦化工业废水.  相似文献   

10.
以苯酚为燃料的微生物燃料电池产电特性   总被引:8,自引:2,他引:8  
选取城市污水处理厂的好氧和厌氧混合污泥作为接种液,构建了双极室微生物燃料电池(Microbial fuel cell, MFC),对以葡萄糖、葡萄糖和苯酚、苯酚为不同燃料的MFC进行了有机物降解和产能效果的研究.试验结果表明,以葡萄糖为单一燃料时MFC的启动时间最短,以苯酚为单一燃料时MFC启动时间最长.MFC在不同燃料来源条件下对苯酚去除率均大于85%,COD去除率超过80%.MFC的连续运行试验结果表明,在1000Ω外电阻条件下,以葡萄糖为单一燃料的MFC运行周期最长,可达400h,最大输出电压为551mV,功率密度为 121 mW·m-2(阳极);以葡萄糖和苯酚为混合燃料的MFC运行周期约200h,最大输出电压为208mV,功率密度为 16mW·m-2(阳极);而以苯酚为单一燃料的MFC运行周期仅约为100h,最大输出电压为121mV,功率密度为 6 mW·m-2(阳极).试验结果最终表明,MFC能够利用苯酚作为燃料,在实现高效降解的同时可稳定地向外输出电能,这为酚类难降解有机物的高效低耗处理提供了新的研究思路.  相似文献   

11.
通过构建填料型微生物燃料电池(MFC),首次对以喹啉为燃料时的MFC阳极表面的微生物群落进行了分析.PCR-DGGE的试验结果表明,随着燃料的改变,微生物群落也发生改变.当以喹啉和葡萄糖的混合溶液稳定地作为燃料时,由于受到喹啉毒性的抑制,微生物多样性降低,优势菌也发生明显的改变.与葡萄糖共基质相比,以单一喹啉为燃料时的阳极微生物优势菌落发生明显改变.新增加一类菌,这类菌与Pseudomonas sp. DIC5RS 的同源性为100%,推测该菌在单一喹啉为MFC燃料时喹啉的降解过程中起到关键作用.  相似文献   

12.
喹啉与葡萄糖共基质条件下生物降解的动力学分析   总被引:11,自引:2,他引:11       下载免费PDF全文
研究了在喹啉与葡萄糖共基质时皮氏伯克霍尔得氏菌 (Burkholderiapickettii)对二者的降解动力学 .结果表明 :在共基质条件下 ,喹啉与葡萄糖能同时被微生物降解 .葡萄糖的存在对喹啉的生物降解起到一定的促进作用 ,而喹啉的存在减慢了微生物对葡萄糖的降解作用 .5 0mg·L-1喹啉与 34、6 0、110mg·L-1葡萄糖共基质时 ,喹啉与葡萄糖的降解都遵循一级反应动力学 .30 0mg·L-1喹啉与 110、32 0、6 90mg·L-1葡萄糖共基质时 ,喹啉的降解已不遵循一级或零级反应 ,而葡萄糖在 110mg·L-1时仍为一级反应 ,增到 32 0、6 90mg·L-1时转变为零级反应动力学  相似文献   

13.
本文研究了模拟废水中不同盐度对微生物燃料电池(Microbial fuel cell, MFC)性能的影响.当向MFC中依次添加0,20,40,60,70g/L NaCl时,MFC的最大输出电压从660mV下降到130mV,库仑效率也从67%下降到4%.如果向MFC中直接添加40g/L和70g/L NaCl并运行两个周期后,MFC无电能输出,然而,停止添加NaCl(盐度解除)后MFC产电性能能够在60h内恢复.此外,当盐度高于40g/L NaCl时,阳极微生物群落发生明显的变化.研究结果可为MFC或其他生物反应器处理盐度废水提供一定的依据.  相似文献   

14.
探讨了通过生物沸石的降解及吸附作用,解决吡啶、喹啉及转化产物NH 4+-N的污染问题.结果表明,生物沸石中的吡啶降解菌Shinella zoogloeoides BC026及喹啉降解菌Pseudomonas sp.BW003能有效去除吡啶、喹啉,同时转化后的NH 4+-N也能被天然沸石或改性沸石所吸附.尽管改性沸石吸附能力不如天然沸石,但其表面能更有效附着微生物,在实际工程应用上更具前景.  相似文献   

15.
Microbial fuel cells (MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However, large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.  相似文献   

16.
厌氧流化床微生物燃料电池处理废水的产电特性   总被引:3,自引:0,他引:3  
在内径40mm、高600mm的液固厌氧流化床空气阴极单室微生物燃料电池(MFC)中,分别以污水和椰壳活性炭为液相和固相,采用间歇运行方式,考察了接种厌氧污泥条件下流化状态对电池产电性能的影响.实验结果表明,固定床条件下,电池启动迅速.初始电压为200mV,80h后电压急剧上升,100h后电池开路电压稳定在700~900mV之间.对比电压和功率密度随电流强度变化的曲线知,电池启动成功后,固定床状态下,电池最大输出功率密度随污水循环流速的增加而增大.床层颗粒由固定状态转变为流化状态后,电池最大输出功率密度由初始值120mW·m-3增加至220mW·m-3,说明流化床可以改善MFC阳极室内传质效果,加快反应速率,提高MFC产电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号