首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the health and safety of the public, it is essential to measure spatiotemporal distribution of air pollution in a region and thus monitor air quality in a fine-grain manner. While most of the sensing-based commercial applications available until today have been using fixed environmental sensors, the use of personal devices such as smartphones, smartwatches, and other wearable devices has not been explored in depth. These kinds of devices have an advantage of being with the user continuously, thus providing an ability to generate accurate and well-distributed spatiotemporal air pollution data. In this paper, we review the studies (especially in the last decade) done by various researchers using different kinds of environmental sensors highlighting related techniques and issues. We also present important studies of measuring impact and emission of air pollution on human beings and also discuss models using which air pollution inhalation can be associated to humans by quantifying personal exposure with the use of human activity detection. The overarching aim of this review is to provide novel and key ideas that have the potential to drive pervasive and individual centric and yet accurate pollution monitoring techniques which can scale up to the future needs.  相似文献   

2.
Ashtamudi estuary, situated on the southwest coast of India, is enormously affected by anthropogenic interventions. Physicochemical quality of water and sedimentological features of the estuary are evaluated during monsoon and nonmonsoon seasons to elucidate its quality variations and to link the same with existing environmental scenario. The whole data has been factorized using principal component analysis for extracting the total variability and linear relationships existing among a set of different physicochemical parameters of the backwater system. In PCA, high loadings were obtained for conductivity, salinity, fluoride, calcium, magnesium, sulfate, boron, and pH. The results were revealed that all the physicochemical processes depend upon seasonal fluctuation of freshwater input and seawater intrusion. Wide spatial concentration fluctuations of organic carbon and iron in bottom sediment have been noticed and both constituents reveal good correlation with sediment texture. The results showed high deterioration of the physicochemical quality of water during nonmonsoon season with respect to monsoon season.  相似文献   

3.
River Sabarmati is one of the biggest and major river of Gujarat that runs through two major cities of Gujarat, Gandhinagar and Ahmedabad and finally meets the Gulf of Khambhat (GoK) in the Arabian Sea. A study was conducted to evaluate the water quality of this river, as it could possibly be one of the major sources for filling up Kalpasar, the proposed man-made freshwater reservoir supposed to be the biggest one in the world. A total of nine sampling stations were established covering 163 km stretch of the river from upstream of Gandhinagar city to Vataman near Sabarmati estuary. Physicochemical (temprature, pH, salinity, chloride, total dissolved solids, turbidity, dissolved oxygen, biochemical oxygen demand, phenol, and petroleum hydrocarbons), biological (phytoplankton), and microbiological (total and selective bacterial count) analyses indicated that the river stretch from Ahmedabad-Vasana barriage to Vataman was highly polluted due to perennial waste discharges mainly from municipal drainage and industries. An implementation of sustainable management plan with proper treatment of both municipal and industrial effluents is essential to prevent further deterioration of the water quality of this river.  相似文献   

4.
Recent assessments of water quality in New Zealand have indicated declining trends, particularly in the 40 % of the country’s area under pasture. The most comprehensive long-term and consistent water quality dataset is the National Rivers Water Quality Network (NRWQN). Since 1989, monthly samples have been collected at 77 NRWQN sites on 35 major river systems that, together, drain about 50 % of New Zealand’s land area. Trend analysis of the NRWQN data shows increasing nutrient concentrations, particularly nitrogen (total nitrogen and nitrate), over 21 years (1989–2009). Total nitrogen and nitrate concentrations were increasing significantly over the first 11 years (1989–2000), but for the more recent 10-year period, only nitrate concentrations continued to increase sharply. Also, the increasing phosphorus trends over the first 11 years (1989–2000) levelled off over the later 10-year period (2000–2009). Conductivity has also increased over the 21 years (1989–2009). Visual clarity has increased over the full time period which may be the positive result of soil conservation measures and riparian fencing. NRWQN data shows that concentrations of nutrients increase, and visual clarity decreases (i.e. water quality declines), with increasing proportions of pastoral land in catchments. As such, the increasing nutrient trends may reflect increasing intensification of pastoral agriculture.  相似文献   

5.
Water quality at Omerli Dam, which is a vital potable water resource of Istanbul City, Turkey was assessed using the first four bands of Landsat 7-ETM satellite data, acquired in May 2001 and water quality parameters, such as chlorophyll-a, suspended solid matter, secchi disk and total phosphate measured at several measurement stations at Omerli Dam during satellite image acquisition time and archived at the Marine Pollution and Ecotoxicology laboratory of the Marmara Research Center, where this study was carried out. Establishing a relationship between this data, and the pixel reflectance values in the satellite image, chlorophyll-a, suspended solid matter, secchi disk and total phosphate maps were produced for the Omerli Dam.  相似文献   

6.
Perchlorate is an inorganic anion that is used in solid rocket propellants, fireworks, munitions, signal flares, etc. The use of fireworks is identified as one of the main contributors in the increasing environmental perchlorate contamination. Although fireworks are displayed for entertainment, its environmental costs are dire. Perchlorates are also emerging as potent thyroid disruptors, and they have an impact on the ecology too. Many studies have shown that perchlorate contaminates the groundwater and the surface water, especially in the vicinity of fireworks manufacturing sites and fireworks display sites. The health and ecological impacts of perchlorate released in fireworks are yet to be fully assessed. This paper reviews fireworks as a source of perchlorate contamination and its expected adverse impacts.  相似文献   

7.
It is known that Brazil still has a privileged position of water quantity and quality, but water use has not proceeded in a responsible manner and often results in impairment of quality. This study aims to evaluate limnological parameters, parasites and bacteria, and concentrations of heavy metals (Cd, Pb, Cu, Cr, Mn, Hg, and Zn) in surface water of Ribeirão Preto Stream. The Ribeirão Preto Stream is located in urban areas under anthropogenic influence. The results showed that the levels of dissolved oxygen values were lower than those established by the National Environmental Council (CONAMA Resolution No 357/2005). The reading of electrical conductivity showed values typical of impacted environments. The parasitological analysis revealed the presence of nematode larvae. The bacteriological analysis showed higher values for total coliform and Escherichia coli than those set by the Brazilian National Environment Council (CONAMA). The heavy metals Cd, Pb, Cu, Cr, Mn, Hg, and Zn showed concentrations in accordance with the guidelines established by CONAMA. The results provide data on the quality of these waters and showed the necessity to protect the watercourse from point sources of contamination, recommending their continued monitoring.  相似文献   

8.
Policy instruments have been initiated for addressing the severe problem of extensive construction equipment emissions (CEE) by governments around the world. Advanced and developing-economy promoters with distinctive background and constraints present differences in the development of CEE reduction policy instruments. However, there is little research looking into the evolving trends, lessons and accumulated experiences in the development of CEE reduction policy instruments. This study conducts a holistic review and analysis on the development of CEE reduction policy instruments from a global perspective. Three groups of policy instruments are identified, including the mandatory administration policy instrument (PI-A), the economic incentive policy instrument (PI-B), and the voluntary participation policy instrument (PI-C). Comparative analysis of CEE reduction policy instruments is conducted between advanced and developing-economy promoters. The results of this study show that both advanced and developing-economy promoters overwhelmingly prefer to adopt PI-As. Developing-economy promoters may not have sufficient resources for implementing PI-Bs and PI-Cs. Advanced-economy promoters have devoted more efforts to developing PI-Bs and PI-Cs. This research also suggested that a mixture of PI-As, PI-Bs and PI-Cs works better, and policy instruments should be selected considering the context of promoters. This research aims to promote experience-sharing between policymakers and provide them with significant insights for formulating more effective CEE reduction policy instruments.  相似文献   

9.
The use of life cycle assessment (LCA) as a sustainability assessment tool for agro-bioenergy system usually has an industrial agriculture bias. Furthermore, LCA generally has often been criticized for being a decision maker tool which may not consider decision takers perceptions. They are lacking in spatial and temporal depth, and unable to assess sufficiently some environmental impact categories such as biodiversity, land use etc. and most economic and social impact categories, e.g. food security, water security, energy security. This study explored tools, methodologies and frameworks that can be deployed individually, as well as in combination with each other for bridging these methodological gaps in application to agro-bioenergy systems. Integrating agronomic options, e.g. alternative farm power, tillage, seed sowing options, fertilizer, pesticide, irrigation into the boundaries of LCAs for agro-bioenergy systems will not only provide an alternative agro-ecological perspective to previous LCAs, but will also lead to the derivation of indicators for assessment of some social and economic impact categories. Deploying life cycle thinking approaches such as energy return on energy invested-EROEI, human appropriation of net primary production-HANPP, net greenhouse gas or carbon balance-NCB, water footprint individually and in combination with each other will also lead to further derivation of indicators suitable for assessing relevant environmental, social and economic impact categories. Also, applying spatio-temporal simulation models has a potential for improving the spatial and temporal depths of LCA analysis.  相似文献   

10.
11.
Minho River, also called Miño (in Spain), extends to about 300 km from Spain to Portugal. The source of the river lies in Spain and in the last 75 km, the river defines the border between Portugal and Spain. Under the scope of a cooperation project between North Portugal and Galicia region of Spain, titled: “Valorization of the natural resources of the Minho/Miño drainage basin”, seven water-sampling campaigns were carried out during the last 2 years in Minho River basin. Seven sampling sites were selected along the international stretch, and five were chosen in the main Portuguese and Spanish tributaries of Minho River. Water quality based on the physicochemical and microbial parameters was assessed. According to the Portuguese legislation for surface waters, the international section of Minho River presents a reasonably good water quality (BOD5 <5 mg/L, TNK <2 mg/L, and total phosphorous <1 mg P/L). Valença and Louro were found to be the most polluted sampling sites and Louro the most polluted tributary (maximum values observed: TSS?=?26 mg/L, BOD5?=?6.6 mg O2/L, COD?=?20.8 mg O2/L, total nitrogen?=?9.9 mg N/L; minimum value observed: OD?=?1.3 mg O2/L). A one-dimensional stream water quality model QUAL2Kw was calibrated using data measured in field surveys along the international stretch of Minho River. QUAL2Kw was also used to predict the impact of flow conditions, discharges, and tributaries on the water quality of international stretch of Minho River, essential to establish proposals for management and planning of Minho River Basin.  相似文献   

12.
In order to optimize the processes of sampling, monitoring, and management, the initial aim of this paper was to develop a model for the definition and prediction of temporal changes of water quality. In the case of the Morava River Basin (Serbia), the patterns of temporal changes have been recognized by applying different multivariate statistical techniques. The results of the conducted cluster analysis are the indicators of the existence of the three monitoring periods: the low-water, transitional, and high-water periods, which is in accordance with changes in the water flow in the analyzed river basin. A possibility of reducing the initial data set and recognizing the main pollution sources was examined by carrying out the principal component/factor analysis. The results indicate that the natural factor has a dominant influence in temporal groups. In order to recognize the discriminatory water quality parameters, a discriminant analysis (DA) was carried out. Conducting the DA enabled a significant reduction in the data set by the extraction of two parameters (the water temperature and electrical conductivity). Furthermore, the artificial neural network technique was used for testing the possibility of predicting changes in the values of the discriminant factors in the monitoring periods. The reliability of this method for the prediction of temporal variations of both extracted parameters within all temporal clusters has been proven.  相似文献   

13.
Water blending is modelled as a combination of a linear program and a stochastic dynamic program. Optimal policies are found for linear and integer-linear formulations using both an expected monetary value and conditional value-at-risk criterion. The sensitivity of these solutions to the discretisation over volume and over time is investigated.  相似文献   

14.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

15.
The present investigation aims to assess the phytoremediation potential of six aquatic macrophytes, viz. Eichhornia crassipes, Hydrilla verticillata, Jussiaea repens, Lemna minor, Pistia stratiotes and Trapa natans grown in paper mill effluent of JK Paper mill of Rayagada, Orissa, for remediation of heavy metals. The experiment was designed in pot culture experiments. Assessment of physico-chemical parameters of paper mill effluent showed significant decrease in pH, conductivity, total dissolved solids, total suspended solids, chlorine, sulphur, biological and chemical oxygen demand after growth of macrophytes for 20 days. Phytoremediation ability of these aquatic macrophytic species for copper (Cu) and mercury (Hg) was indicated by assessing the decrease in the levels of heavy metals from effluent water. Maximum reduction (66.5 %) in Hg content of untreated paper mill effluent was observed using L. minor followed by T. natans (64.8 %). L. minor showed highest reduction (71.4 %) of Cu content from effluent water followed by E. crassipes (63.6 %). Phytoextraction potential of L. minor was remarkable for Hg and Cu, and bioaccumulation was evident from bioconcentration factor values, i.e. 0.59 and 0.70, respectively. The present phytoremediation approach was considered more effective than conventional chemical treatment method for removing toxic contaminants from paper mill effluent.  相似文献   

16.
California’s Clean Beach Initiative (CBI) funds projects to reduce loads of fecal indicator bacteria (FIB) impacting beaches, thus providing an opportunity to judge the effectiveness of various CBI water pollution control strategies. Seventeen initial projects were selected for assessment to determine their effectiveness on reducing FIB in the receiving waters along beaches nearest to the projects. Control strategies included low-flow diversions, sterilization facilities, sewer improvements, pier best management practices (BMPs), vegetative swales, and enclosed beach BMPs. Assessments were based on statistical changes in pre- and postproject mean densities of FIB at shoreline monitoring stations targeted by the projects. Most low-flow diversions and the wetland swale project were effective in removing all contaminated runoff from beaches. UV sterilization was effective when coupled with pretreatment filtration and where effluent was released within a few hundred meters of the beach to avoid FIB regrowth. Other BMPs were less effective because they treated only a portion of contaminant sources impacting their target beach. These findings should be useful to other coastal states and agencies faced with similar pollution control problems.  相似文献   

17.
Conjunctive use of saline/non-saline irrigation waters is generally aimed at minimizing yield losses and enhancing flexibility of cropping, without much alteration in farming operations. Recommendation of location-specific suitable conjunctive water use plans requires assessment of their long-term impacts on soil salinization/sodification and crop yield reductions. This is conventionally achieved through long-term field experiments. However such impact evaluations are site specific, expensive and time consuming. Appropriate decision support systems (DSS) can be time-efficient and cost-effective means for such long-term impact evaluations. This study demonstrates the application of one such (indigenously developed) DSS for recommending best conjunctive water use plans for a, rice-wheat growing, salt affected farmer’s field in Gurgaon district of Haryana (India). Before application, the DSS was extensively validated on several farmers and controlled experimental fields in Gurgaon and Karnal districts of Haryana (India). Validation of DSS showed its potential to give realistic estimates of root zone soil salinity (with R = 0.76–0.94; AMRE = 0.03–0.06; RMSPD = 0.51–0.90); sodicity (with R = 0.99; AMRE = 0.02; RMSPD = 0.84) and relative crop yield reductions (AMRE = 0.24), under existing (local) resource management practices. Long term (10 years) root zone salt build ups and associated rice/wheat crop yield reductions, in a salt affected farmer’s field, under varied conjunctive water use scenarios were evaluated with the validated DSS. It was observed that long-term applications of canal (CW) and tube well (TW) waters in a cycle and in 1:1 mixed mode, during Kharif season, predicted higher average root zone salt reductions (2–9%) and lower rice crop yield reductions (4–5%) than the existing practice of 3-CW, 3-TW, 3-CW. Besides this, long-term application of 75% CW mixed with 25% TW, during Rabi season, predicted about 17% lower average root-zone salt reductions than the cyclic applications of (1-CW, 1-TW, 2-CW) and (2-CW, 1-TW, 1-CW, i.e., existing irrigation strategy). However, average wheat crop yield reductions (16–17%) simulated under all these strategies were almost at par. In general, cyclic-conjunctive water use strategies emerged as better options than the blending modes. These results were in complete confirmation with actual long-term conjunctive water use experiments on similar soils. It was thus observed that such pre-validated tools could be efficient means for designing, local resource and target crop yield-specific, appropriate conjunctive water use plans for irrigated agricultural lands.  相似文献   

18.
Little is known about seasonal differences (ice-on vs. ice-off periods) and the sensitivity of in-stream processes to surface water quality constituents in rivers that have a persistent ice cover in winter. The goal of this study is to investigate the sensitivity of nutrient transformation processes on surface water quality, especially rivers in cold regions where ice-covered conditions persist for a substantial part of the year. We established a sensitivity analysis framework for water quality modelling and monitoring of rivers in cold regions using the Water Quality Analysis Program WASP7. The lower South Saskatchewan River in the interior of western Canada, from the Gardiner Dam at Lake Diefenbaker to the confluence of the North and South Saskatchewan rivers, is used as a test case for this purpose. The study reveals that parameter sensitivities differ between ice-covered and ice-free periods and biological model parameters related to nutrient-phytoplankton dynamics can still be sensitive during the ice-covered season. For example, sediment oxygen demand is an important parameter during the ice-on period, whereas parameters related to nitrification are more sensitive in the ice-off period. These results provide insight into important water quality monitoring aspects in cold regions during different seasons.  相似文献   

19.
Large-scale industrialization, population inflow, and rapid urbanization coupled with unfavorable meteorological conditions often induce significant degradation of urban environment. In order to assess the extent of environmental impacts due to establishment of the Integrated Industrial Estate??Pantnagar (IIE-Pantnagar), ambient air and groundwater were monitored from June 2007 to May 2008. Collected baseline information was normalized and interpreted with the application of air (AQI) and water quality indices (WQI). Among the pre-identified air pollutants, suspended particulate matter was found to be the principal culprit to deteriorate ambient air quality, with a maximum annual concentration of 418.5 ??g/m3. Monthly average concentrations of respirable particulate matter (aerodynamic diameter < 10 ??m) also persist at a critical level with an annual maximum of 207.3 ??g/m3. A segmented linear function with maximum operator concept was used to compute AQI, and the developed index was found well suitable to demonstrate temporal variations of ambient air quality. The computed AQI value for the selected study region varied from moderate (97.0) to very poor pollution level (309.2) in respect to developed air quality standards. Furthermore, an integrated WQI was developed comprising 9 parameters, and among all the 10 pre-identified locations, the average groundwater quality was found acceptable in terms of Indian drinking water standards. The maximum WQI (70.6) was found at the Kichha Railway Station during summer months, revealing moderate pollution load. Industrial discharge from IIE-Pantnagar coupled with other industrial setup may hold responsible for such kind of degradation of water quality. In contrast, WQI computed at Rudrapur City demonstrate minimum (15.0?C22.1) pollution load. For 95% of the monitoring period, the computed WQI was found acceptable for all selected locations with few exceptions. The application of WQI to assess temporal variations in groundwater quality was therefore found satisfactory.  相似文献   

20.
The Chillán River in Central Chile plays a fundamental role in local society, as a source of irrigation and drinking water, and as a sink for urban wastewater. In order to characterize the spatial and temporal variability of surface water quality in the watershed, a Water Quality Index (WQI) was calculated from nine physicochemical parameters, periodically measured at 18 sampling sites (January–November 2000). The results indicated a good water quality in the upper and middle parts of the watershed. Downstream of the City of Chillán, water quality conditions were critical during the dry season, mainly due to the effects of the urban wastewater discharge. On the basis of the results from a Principal Component Analysis (PCA), modifications were introduced into the original WQI to reduce the costs associated with its implementation. WQIDIR2 and WQIDIR, which are both based on a laboratory analysis (Chemical Oxygen Demand) and three (pH, temperature and conductivity), respectively, four field measurements (pH, temperature, conductivity and Dissolved Oxygen), adequately reproduce the most important spatial and temporal variations observed with the original index. They are proposed as useful tools for monitoring global water quality trends in this and other, similar agricultural watersheds in the Chilean Central Valley. Possibilities and limitations for the application of the used methodology to watersheds in other parts of the world are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号