首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The genetic organization of colonies of the subterranean termite Reticulitermes flavipes in two subpopulations in Massachusetts was explored using five polymorphic allozymes and double-strand conformation polymorphism (DSCP) analysis of the mitochondrial control region. Empirically obtained estimates of worker relatedness and F-statistics were compared with values generated by computer simulations of breeding schemes to make inferences about colony organization. In one study site (G), worker genotypes indicated the presence of a mixture of colonies headed by monogamous outbred primary reproductives and colonies headed by inbreeding neotenic reproductives, both colony types having limited spatial ranges. A second site (S) was dominated by several large colonies with low relatedness among nestmates. Mixed DSCP haplotypes in three colonies indicated that nestmates had descended from two or three unrelated female reproductives. Computer simulations of breeding schemes suggested that positive colony inbreeding coefficients at site S resulted from either commingling of workers from different nests or different colonies. Such an exchange of workers between nests corresponds to the multiple-site nesting lifetype of many subterranean termites and resembles colony structure in polycalic Formica ants. Our study demonstrates considerable variation in R. flavipes colony structure over a small spatial scale, including colonies headed by monogamous outbred primary reproductives, colonies containing multiple inbred neotenic reproductives and large polydomous colonies containing the progeny of two or more unrelated queens, and suggests that the number of reproductives and nestmate relatedness change with colony age and size.  相似文献   

2.
Summary The genetic population structure and the sociogenetic organization of the red wood ant Formica truncorum were compared in two populations with monogynous colonies and two populations with polygynous colonies. The genetic population structure was analysed by measuring allele frequency differences among local subsets of the main study populations. The analysis of sociogenetic organisation included estimates of nestmate queen and nestmate worker relatedness, effective number of queens, effective number of matings per queen, relatedness among male mates of nestmate queens and relatedness between queens and their male mates. The monogynous populations showed no differentiation between subpopulations, whereas there were significant allele frequency differences among the subpopulations in the polygynous population. Workers, queens and males showed the same genetical population structure. The relatedness among nestmate workers and among nestmate queens was identical in the polygynous societies. In three of the four populations there was a significant heterozygote excess among queens. The queens were related to their male mates in the polygynous population analysed, but not in the monogynous ones. The data suggest limited dispersal and partial intranidal mating in the populations with polygynous colonies and outbreeding in the populations having monogynous colonies. Polyandry was common in both population types; about 50% of the females had mated at least twice. The males contributed unequally to the progeny, one male fathering on average 75% of the offspring with double mating and 45–80% with three or more matings. Correspondence to: L. Sundström  相似文献   

3.
The impact of intranest relatedness on nestmate recognition was tested in a population of polydomous and monodomous nests of the mound-building ant Formica pratensis. Nestmate recognition was evaluated by testing aggression levels between 37 pairs of nests (n=206 tests). Workers from donor colonies were placed on the mounds of recipient nests to score aggressive interactions among workers. A total of 555 workers from 27 nests were genotyped using four DNA microsatellites. The genetic and spatial distances of nests were positively correlated, indicating budding and/or fissioning as spread mechanisms. Monodomous and polydomous nests did not show different aggression levels. Aggression behavior between nests was positively correlated with both spatial distance and intranest relatedness of recipient colonies, but not with genetic distance or intranest relatedness of donor colonies. Multiple regression analysis revealed a stronger effect of spatial distance than of genetics on aggression behavior in this study, indicating that the relative importance of environment and genetics can be variable in F. pratensis. Nevertheless, the positive regression between intranest relatedness of recipient colonies and aggression in the multiple analysis supports earlier results that nestmate recognition is genetically influenced in F. pratensis and further indicates that foreign label rejection most likely explains our data.  相似文献   

4.
Genetic relatedness of the mound-building ant Formica pratensis was determined by means of microsatellite DNA polymorphism, and its impact on nestmate recognition was tested in a population in Southern Sweden (Oeland). Recognition between nests was measured by testing aggression levels between single pairs of workers. The genetic distances of nests (Nei's genetic distance) and the spatial distance of nests were correlated and both showed a strong relation to the aggression behavior. Multiple regression analysis revealed a stronger impact of genetic relatedness rather than spatial distances on aggression behavior. Neighbouring nests were more closely related than distant nests, which may reflect budding as a possible spreading mechanism. The genetic distance data showed that nestmate recognition was strongly genetically influenced in F. pratensis. Received: 2 October 1997 / Accepted after revision: 10 January 1998  相似文献   

5.
Multiple-queen (polygyne) colonies of the introduced fire ant Solenopsis invicta present a paradox for kin selection theory. Egg-laying queens within these societies are, on average, unrelated to one another, and the numbers of queens per colony are high, so that workers appear to raise new sexuals that are no more closely related to them than are random individuals in the population. This paradox could be resolved if workers discriminate between related and unrelated nestmate sexuals in important fitness-related contexts. This study examines the possibility of such nepotism using methods that combine the following features: (1) multiple relevant behavioral assays, (2) colonies with an unmanipulated family structure, (3) multiple genetic markers with no known phenotypic effects, and (4) a statistical technique for distinguishing between nepotism and potentially confounding phenomena. We estimated relatedness between interactants in polygyne S. invicta colonies in two situations, workers tending egg-laying queens and workers feeding maturing winged queens. In neither case did we detect a significant positive value of relatedness that would implicate nepotism. We argue that the non-nepotistic strategies displayed by these ants reflect historical selection pressures experienced by native populations, in which nestmate queens are highly related to one another. The markedly different genetic structure in native populations may favor the operation of stronger higher-level selection that effectively opposes weaker individual-level selection for nepotistic interactions within nests. Received: 28 June 1996 / Accepted after revision: 6 October 1996  相似文献   

6.
Inadvertent selection is an important genetic process that frequently occurs during laboratory culture. The mass-reared strain of the sweet potato weevil Cylas formicarius exhibits stronger inbreeding depression than the wild strain does. When inbreeding depression occurs in a population, mating with a close relative is often considered maladaptive; however, in some contexts, the inclusive fitness benefits of inbreeding may outweigh the costs, favoring individuals that tolerate a low level of inbreeding depression. Theory predicts that mass-reared strain weevils will avoid inbreeding while wild strain weevils will tolerate inbreeding. To examine this prediction, we compared the effect of relatedness on the mating and insemination successes in mass-reared and wild strains of C. formicarius. While close relative pairs of the wild strain copulated less frequently than non-kin pairs, almost all mass-reared strain pairs copulated irrespective of relatedness. The results showed that the strain with weak inbreeding depression (wild strain) avoided inbreeding, whereas the strain with strong inbreeding depression (mass-reared strain) tolerated inbreeding. The contradiction between the theoretical prediction and our results is discussed from the perspective of laboratory adaptation, mating systems, and life history of C. formicarius.  相似文献   

7.
Nestmate recognition is a necessary capacity for the occurrence of discrimination between nestmate and non-nestmate individuals. In one-piece nesting termites, which nest and forage in a single piece of wood, nestmate recognition is poorly studied mainly because the probability of encountering exogenous individuals is low in comparison with separate-piece nesting termites. Previous work described that production of soldiers of Neotermes chilensis, a one-piece nesting termite, increased when the risk of invasion of their colony increased, for example when neighboring colonies were present in the same nesting substrate and members of different colonies met when digging galleries. If soldiers are to fulfill their defensive role under these circumstances, they should show nestmate recognition ability; moreover, based on work on other social insects, such nestmate recognition should be based on cuticular compounds (CC). Bioassays were performed in which a soldier of N. chilensis was confronted with a nestmate or non-nestmate primary reproductive, pseudergate or another soldier, and in which a soldier was confronted with untreated and with CC-deprived dead primary reproductives. The results showed that soldiers were indeed more aggressive toward non-nestmates than nestmates for all castes, and that this discrimination was mediated mainly by qualitative (simple matching coefficient) and quantitative (Renkonen index) differences in CC.  相似文献   

8.
Summary The genetic and social structures of polygyne and monogyne forms of the fire ant, Solenopsis invicta, are investigated in a comparative manner using allozyme data from two polymorphic loci. Foundress queens of the monogyne form are signly inseminated and appear to produce all males present in the colony during the major summer mating flights. The average regression coefficient of relatedness (b) among female nestmates of the monogyne form is 0.714 (Fig. 2), statistically indistinguishable from the pedigree coefficient of relatedness (G) of 0.75. We suggest that the evolution of obligate worker sterility in Solenopsis is associated with this high relatedness between workers and the queens they rear. Functional queens in polygyne nests also are singly inseminated and are no more closely related to nestmate queens than to other queens (within-nest b=0). Within-nest relatedness of workers in the polygyne population is similarly low (Fig. 2). Both the monogyne and polygyne populations from northcentral Georgia are in Hardy-Weinberg equilibrium at both allozyme loci and we found no evidence of significant population subdividion or inbreeding in the polygyne population. These results do not support the view that kin selection has promoted the evolution of polygyny in North American S. invicta. Rather, mutualism appears to be the most likely selective factor mediating queen associations inthis ant.  相似文献   

9.
采用DNS法研究了我国广泛分布的一种低等木食性白蚁——黑胸散白蚁纤维素酶的体外酶活特性以了解其纤维素降解机制.结果表明,内切β-1,4-葡聚糖酶(EG)、纤维二糖水解酶(CBH)和β-葡萄糖苷酶(BG)这3种酶的最佳反应时间均为15 min,最佳底物浓度为1%,最适反应pH为5.6,最适反应温度为35℃.在最适反应条件下,EG、CBH和BG的活性分别达到71.3(±13.9)U/mg、5.8(±0.8)U/mg和4.1(±0.7)U/mg.EG在体外的热稳定性较差,在50℃及更高温度酶活很低或完全失活,但该酶对pH稳定性较好,在pH 3.2~8.0范围内酶活力变化不大.Native-PAGE电泳检测到该白蚁体内至少有8种不同的EG活性条带,肠道不同部位纤维素酶活性条带种类不同.这些研究表明,木食性白蚁降解纤维素是一个复杂的过程,需要多种纤维素酶的共同作用.  相似文献   

10.
Gnamptogenys striatula is a polygynous ant species, in which all workers are potentially able to mate. The reproductive status, relatedness and pedigree relationships among nestmate queens and winged females in a Brazilian population were investigated. We collected all the sexual females of 12 colonies (2–44 queens per colony, plus 2–18 winged females in 3 colonies). Dissections revealed that 98% of the queens were inseminated and that the queens in the most polygynous colonies did not lay equal numbers of eggs. The sexual females and a sample of the population were genotyped using eight microsatellite markers. Relatedness among nestmate queens was among the highest recorded to date (0.65±0.25), and tests of pedigree relationship showed that they were likely to be full-sisters, and sometimes cousins. Mated winged females were always full-sisters, the estimated genetically effective queen numbers were low and tests of pedigree relationship showed that only a few queens in the colony could be the mothers. These results suggest that the high queen-queen relatedness in polygynous colonies of G. striatula is maintained by an unusual mechanism: winged females are mostly produced by only one or a few queens, and these groups of full-sisters are recruited back into their original nest after mating. Received: 26 November 1999 / Revised: 7 September 2000 / Accepted: 7 September 2000  相似文献   

11.
The ability to discriminate against competitors shapes cooperation and conflicts in all forms of social life. In insect societies, workers may detect and destroy eggs laid by other workers or by foreign queens, which can contribute to regulate reproductive conflicts among workers and queens. Variation in colony kin structure affects the magnitude of these conflicts and the diversity of cues used for discrimination, but the impact of the number of queens per colony on the ability of workers to discriminate between eggs of diverse origin has so far not been investigated. Here, we examined whether workers from the socially polymorphic ant Formica selysi distinguished eggs laid by nestmate workers from eggs laid by nestmate queens, as well as eggs laid by foreign queens from eggs laid by nestmate queens. Workers from single- and multiple-queen colonies discriminated worker-laid from queen-laid eggs, and eliminated the former. This suggests that workers collectively police each other in order to limit the colony-level costs of worker reproduction and not because of relatedness differences towards queens’ and workers’ sons. Workers from single-queen colonies discriminated eggs laid by foreign queens of the same social structure from eggs laid by nestmate queens. In contrast, workers from multiple-queen colonies did not make this distinction, possibly because cues on workers or eggs are more diverse. Overall, these data indicate that the ability of F. selysi workers to discriminate eggs is sufficient to restrain worker reproduction but does not permit discrimination between matrilines in multiple-queen colonies.  相似文献   

12.
Under favorable conditions, the mound-building ant Formica exsecta may form polydomous colonies and can establish large nest aggregations. The lack of worker aggression towards nonnestmate conspecifics is a typical behavioral feature in such social organization, allowing for a free flux of individuals among nests. However, this mutual worker toleration may vary over the seasons and on spatial scales. We studied spatio-temporal variation of worker–worker aggression within and among nests of a polydomous F. exsecta population. In addition, we determined inter- and intracolony genetic relatedness by microsatellite DNA genotyping and assessed its effect on nestmate recognition. We found significant differences in the frequency of worker exchange among nests between spring, summer, and autumn. Moreover, we found significant seasonal variation in the level of aggression among workers of different nests. Aggression levels significantly correlated with spatial distance between nests in spring, but neither in summer nor in autumn. Multiple regression analysis revealed a stronger effect of spatial distances rather than genetic relatedness on aggressive behavior. Because nestmate discrimination disappeared over the season, the higher aggression in spring is most plausibly explained by cue intermixing during hibernation.  相似文献   

13.
Sex ratios were bimodally distributed in a population of the monogynous and monandrous ant Leptothorax nylanderi during each of 3 study years. The population-wide investment ratios suggested worker control of sex allocation. Nest-level variation in the proportional investment in virgin queens was not affected by the presence or absence of a queen and only slightly by collecting year, but was correlated with nest size, total sexual investment and, unexpectedly, with differences in nestmate relatedness: small, low-investment nests and nests with several worker lineages produced male-biased sex ratios. Colonies containing several worker lineages arise from usurpation of mature colonies by unrelated founding queens and the fusion of unrelated colonies under strong nest site limitation. In contrast to facultatively polygynous and polyandrous species of social insects, where workers can maximize their inclusive fitness by adjusting sex ratios according to the degree of relatedness asymmetry, workers in mixed colonies of L. nylanderi do not benefit from manipulating sex allocation, as here relatedness asymmetries appear to be the same as in homogeneous colonies. Received: 7 December 1999 / Received in revised form: 29 February 2000 / Accepted: 13 March 2000  相似文献   

14.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

15.
The ability to discriminate degrees of relatedness may be expected to evolve if it allows unreciprocated altruism to be preferentially directed towards kin (Hamilton in J Theor Biol 7:1–16, 1964). We explored the possibility of kin recognition in the primitively eusocial halictid bee Lasioglossum malachurum by investigating the reliability of worker odour cues that can be perceived by workers to act as indicators of either nest membership or kinship. Cuticular and Dufour’s gland compounds varied significantly among colonies of L. malachurum, providing the potential for nestmate discrimination. A significant, though weak, negative correlation between chemical distance and genetic relatedness (r = −0.055, p < 0.001) suggests a genetic component to variation in cuticular bouquet, but odour cues were not informative enough to discriminate between different degrees of relatedness within nests. This pattern of variation was similar for Dufour’s gland bouquets. The presence of unrelated individuals within nests that are not chemically different from their nestmates suggests that the discrimination system of L. malachurum is prone to acceptance errors. Compounds produced by colony members are likely combined to generate a gestalt colony chemical signature such that all nestmates have a similar smell. The correlation between odour cues and nest membership was greater for perceived compounds than for non-perceived compounds, suggesting that variability in perceived compounds is a result of positive selection for nestmate recognition despite potentially stabilising selection to reduce variability in odour differences and thereby to reduce costs derived from excessive intracolony nepotistic behaviour.  相似文献   

16.
Summary Within-aggregation nest distribution and behavioral interactions between pairs of female Lasioglossum zephyrum were investigated. Within aggregations, nests are contagiously distributed (clumped), and this distribution is not correlated with the particle size of the soil surface. Results of behavioral interactions both in the field and laboratory show that females residing near one another behave as if they are more closely related than females residing at greater distances from one another. The behaviors used are known to be correlated with the degree of relatedness between females. This suggests that females found colonies near their natal nests, producing neighborhoods of related colonies within aggregations of L. zephyrus.  相似文献   

17.
Conflicts of interest among genetically heterogeneous nestmates in social insect colonies have been emphasized as driving colony resource allocation. However, potential intracolonial conflicts may not actually be realized so that resource allocation could be shaped primarily by among-colony selection that maximizes colony productivity. To elucidate the causal basis of patterns of resource allocation, I experimentally manipulated three fundamental aspects of colony social structure (relatedness among workers, relatedness among larvae, and queen presence) in the ant Temnothorax curvispinosus and measured effects on colony resource allocation to new workers, gynes, and males. The experimental manipulations had widespread effects on patterns of colony resource allocation, but there was little evidence for realized conflicts over the sex ratio and caste ratio. Decreasing nestmate relatedness caused decreased colony productivity, suggesting that more closely related nestmates have more favorably interacting phenotypes. Together, these results suggest that resource allocation in T. curvispinosus may be shaped more by among-colony selection than intracolonial conflict, leading to queen–worker–brood coadaptation.  相似文献   

18.
The ant species Cardiocondyla batesii is unique in that, in contrast to all other ant species, both sexes are flightless. Female sexuals and wingless, ergatoid males mate in the nest in autumn and young queens disperse on foot to found their own colonies in spring. The close genetic relatedness between queens and their mates (rqm=0.76±SE 0.12) and the high inbreeding coefficient (F=0.55; 95%CI 0.45–0.65) suggest that 83% of all matings are between brothers and sisters. As expected from local mate competition theory, sex ratios were extremely female biased, with more than 85% of all sexuals produced being young queens. Despite the common occurrence of inbreeding, we could not detect any adult diploid males. Though the probability of not detecting multiple mating was relatively high, at least one-third of all queens in our sample had mated more than once. Multiple mating to some extent counteracts the effects of inbreeding on worker relatedness (rww=0.68±SE 0.05) and would also be beneficial through decreasing diploid male load, if sex was determined by a single locus complementary system.Communicated by L. Sundström  相似文献   

19.
Summary Adult pairs of the woodroach Cryptocercus punctulatus were reported to be incapable of founding colonies independently because the presence of a recently molted juvenile was required to transfer encysted symbiotic gut protozoa to newly hatched roaches. Field and laboratory evidence presented here shows that adult pairs of C. punctulatus do found colonies and that juveniles are generally not present to provide neonates with protozoan cysts. Newly hatched nymphs acquire their intestinal symbionts by feeding on the anal fluids of the adult roaches, i.e., by proctodeal trophallaxis. Conditions other than a symbiotic association with protozoans may have contributed to the evolution of eusociality in termites (Isoptera).  相似文献   

20.
Serial polygyny, defined as the temporal succession of several reproductive females in a colony, occurs in some monogynous social insects and has so far attracted little attention. Diacamma cyaneiventre is a queenless ponerine ant found in the south of India. Colonies are headed by one singly mated worker, the gamergate. After the death of the gamergate or her absence following colony fission, the gamergate is replaced by a newly eclosed nestmate worker. After a replacement, colonies go through short-lived periods in which two matrilines of sisters co-occur. This is a situation which can be described as serial polygyny. To measure the consequences of serial polygyny, a genetic analysis was performed on 449 workers from 46 colonies of D. cyaneiventre using five microsatellite loci. The presence of more than one matriline among workers of the same nest was detected in 19% of colonies, indicating a recent change of gamergate. The average genetic relatedness among nestmate workers was 0.751 and did not significantly differ from the theoretical expectation under strict monogyny and monandry (0.75). A simple analytical model of the temporal dynamics of serial polygyny was developed in order to interpret these results. We show that the rate of gamergate turnover relative to the rate of worker turnover is the crucial parameter determining the level of serial polygyny and its effect on the genetic structure of colonies. This parameter, estimated from our data, confirms that serial polygyny occurs in D. cyaneiventre but is not strong enough to influence significantly the average genetic relatedness among workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号