首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
California's Phase 2 Reformulated Gasoline (CaRFG), introduced early in 1996, represents an important step toward attainment of ozone standards. Studies of vehicle emissions and ambient air quality data have reported substantial reductions of ozone precursors due to CaRFG. This study uses daily measurements of regional ozone and meteorology to estimate the effect of CaRFG on ozone concentrations in three areas of California. In each area, a regression model was used to partially account for the daily effects of meteorology on area-wide ozone maxima for May-October. The statistical models are based on combinations of air temperature aloft (approximately 5000 ft), surface air temperatures, and surface wind speeds. Estimated ozone benefits were attributed to CaRFG after accounting for meteorology, which improved the precision of the estimates by approximately 37-57% based on a resampling analysis. The ozone benefits were calculated as the difference in ozone times the proportion of the reductions of hydrocarbons and nitrogen oxides attributed to CaRFG by the best available emission inventories. Ozone benefits attributed to CaRFG (with approximately 90% confidence) are 8-13% in the Los Angeles area, -2-6% in the San Francisco Bay area overall with greater benefits in two major subregions, and 3-15% in the Sacramento area.  相似文献   

2.
During the Mesoscale Alpine Programme (MAP) special observation period (SOP) between 7 September and 15 November 1999, ground-based and airborne measurements have been conducted in the Rhine valley south of the Lake of Constance to investigate the unstationary aspects of Foehn and related phenomena, like the impact of Foehn on the ozone concentrations in the valley. Foehn events occurred with above-average frequency and high diversity. Foehn induced ozone peaks in October and November are found to be much lower than the September Foehn case of the period. An inversion layer in the lake area with ozone concentrations below 10 ppb often shields the monitoring stations from the Foehn air aloft. Trajectory calculations for the Foehn period between 19 and 24 October 1999 reveal that the Foehn air originated from below 1 to 1.5 km above the Po Basin and the Mediterranean Sea. Tethered balloon soundings in the source area south of the Alps, ozone measurements at the mountain station Jungfraujoch (3580 m a.s.l.) and airborne measurements across the Alpine crests reveal that the ozone levels found in the Foehn air correspond to the concentrations just above the mixing height in the Po Basin and are transported across the Alpine crest within the lowest flow layer.  相似文献   

3.
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.  相似文献   

4.
We present a study of the seasonal and diurnal variability of carbon monoxide and selected volatile organic compounds in the Los Angeles area. Measurements were made during four different nine-day field campaigns in April/May, September, and November, 2007, and February, 2008, at the Mt. Wilson sampling site, which is located at an elevation of approximately 1700 m in the San Gabriel Mountains overlooking Pasadena and the Los Angeles basin. The results were used to characterize the Mt. Wilson site as a representative location for monitoring integrated Los Angeles basin emissions, and, by reference to carbon monoxide emissions, to estimate average annual emissions. The considerable seasonal variability of many hydrocarbons, in both their measured mixing ratios and their relationship to carbon monoxide, was indicative of variable source strengths. Most interestingly, perturbation of C4 hydrocarbon ratios suggested an enhanced role for chlorine chemistry during the month of September, likely as the result of Los Angeles’ coastal location. Such coastal influence was confirmed by observations of enhanced mixing ratios of marine halocarbons, as well as air mass back trajectories.  相似文献   

5.
Analysis of vertical temperature soundings at Los Angeles International Airport (LAX) shows that a conservative height of the inversion base for pollutant containment purposes is 490 ft (150 m). This altitude is considerably less than the 3000 ft (914 m) pollution containment altitude assumed by the EPA in preparing their emission inventory for the airport. (Figure 1.) After correcting the EPA emission inventory to reflect a real world inversion height, the emission inventory for aircraft at Los Angeles International Airport is estimated to be approximately 50% less. Aircraft thus become a less significant pollution source and consideration should be given to relaxing engine emission control requirements accordingly.

This paper examines current emission control philosophy, which according to the EPA should be based upon the significance of the particular polluting source. The problem of accounting for above ground aircraft emissions is then considered. Daily inversion height data are then used to determine a realistic vertical containment altitude for aircraft emissions. Problems in obtaining good inversion data are described. Finally, aircraft emissions at Los Angeles International Airport are adjusted to reflect real world inversion conditions on those days when the inversion height is low enough to influence significantly air pollution levels. Recommendations are made for additional research leading to possible change to NOx emission control requirements for aircraft.  相似文献   

6.
A research project has been under way to investigate air pollution problems in Los Angeles County with the help of the data supplied by the Los Angeles County Air Pollution Control District. These data consist of measurements of primary pollutants such as nitric oxide, hydrocarbons, carbon monoxide, sulfur dioxide and particu-lates, and secondary pollutants such as ozone and nitrogen dioxide, recorded hourly at a number of different stations in Los Angeles County over the past seventeen years. This present discussion deals in a preliminary way with a particular aspect of this analysis, namely, the occurrence of photochemical smog in Los Angeles. The paper is divided into two main sections. The first is intended to provide a brief survey of the problem of photochemical smog in Los Angeles as presently understood in relation to the available field data and also in relation to chamber experiments which have been run in various laboratories. The second part of the paper discusses a class of intervention problems that arise in studying the data. It is noted that parallel problems occur in the study of other ecological material and elsewhere. Statistical methods for dealing with this class of problems are illustrated with some of the Los Angeles data.  相似文献   

7.
The emission rate of particle-phase petroleum biomarkers in vehicular exhaust compared to the concentrations of these biomarkers in ambient air is used to determine the particulate organic compound concentration due to primary particle emissions from motor vehicles in the southern California atmosphere. A material balance on the organic particulate matter emitted from motor vehicle traffic in a Los Angeles highway tunnel first is constructed to show the proportion which is solvent-extractable and which will elute from a GC column, the ratio of resolved to unresolved compound mass, the portion of the resolved material that can be identified as single organic compounds, and the contribution of different classes of organic compounds to the overall identified fraction. It is shown that the outdoor ambient concentrations of the petroleum biomarkers track primary emissions measured in the highway tunnel, confirming that direct emissions of these compounds from vehicles govern the observed ambient petroleum biomarker concentrations. Using organic chemical tracer techniques, the portion of fine organic particulate matter in the Los Angeles atmosphere which is attributable to direct particle emissions from vehicle exhaust is calculated to vary from 7.5 to 18.3% at different sites throughout the air basin during a summertime severe photochemical smog episode. A similar level of variation in the contribution of primary motor vehicle exhaust to fine particulate organic matter concentrations during different times of day is seen. While peak atmospheric concentrations of fine particulate organic carbon are observed during the 1200–1600 PDT afternoon sampling period, only 6.3% of that material is apportioned to the directly emitted particles from vehicle exhaust. During the morning traffic peak between 0600–1000 PDT, 19.1% of the fine particulate organic material is traced to primary emissions from motor vehicles.  相似文献   

8.
During the warm season (March–September), high ozone concentrations have been reported at the coastal and mountain monitoring stations of the eastern Iberia coast (Millán et al., J. Geophys. Res. 102 (D7) 8811, J. Appl. Meteorol. 4 (2000) 487). The vegetation protection threshold of current Directive 92/72/EEC and the World Health Organisation guideline for the protection of crops and semi-natural vegetation are systematically exceeded during the whole period. The main objective of the present study is to search for the origin of these chronic pollution levels: to search for the reason(s) for such high O3 concentrations during such a long period. A mesoscale model is used to reproduce the diurnal cycle of winds and stability/layering over the Western Mediterranean Basin (WMB), at a sufficient space/temporal resolution, under a typical recursive synoptic condition during the warm season: data from the flight tracks of the European Project—Regional Cycles of Air Pollution in the West-Central Mediterranean Area—are used to substantiate the model results. Times of residence and the final distribution of pollutants entering the WMB are estimated using single-particle Lagrangian trajectories and a multiple-particle dispersion model. Our results show that the marine boundary layer and the lower troposphere in the region between the Balearic Islands and eastern Iberia are subject to a flow regime that tends to accumulate pollutants within large circulations, covering the entire western basin. We have also shown a diurnal pulsation of the Tramontana/Mistral wind regime, which can transport new pollutants into the area (background concentrations of 50–65 ppb of O3 of continental European origin) that are added to local emissions and re-circulated within the coastal breezes at eastern Iberia for periods of more than five days. Local emissions and wind configuration contribute to increase the O3 concentrations up to 100 ppb and even more.  相似文献   

9.
Photochemical 'smog' contains mixtures of gases (e.g. ozone, nitrogen dioxide), and dry particles (e.g. nitrates). Intermittent fog in the same geographical area can be acidic with high concentrations of nitric acid. Results from recent field studies in the Los Angeles Basin have emphasized the relative toxicity of these components of photochemical air pollution. Studies have focused on gaseous+fog or gaseous+dry particulate effects on conifers, gaseous+fog effects on crops, and the effects of trace pollutants produced during generation of ozone on crops. Data from these studies indicate that direct alterations in growth and physiological responses were observed only with gaseous pollutants (primarily ozone), or repeated applications of highly acidic fogs (pH < 2.7). Direct particle dry deposition effects are unclear. Few interactions have been found between gaseous pollutants and acidic fog. Charcoal-filtered open-top chambers are highly effective in removing pollutants in the following order: fog (100%) > peroxyacetyl nitrate > ozone > nitrogen dioxide > sulfur dioxide > nitrate ion > ammonium ion > sulfate ion. However, nitric oxide concentrations are higher in charcoal-filtered chambers than in ambient air. The studies point out the importance of considering other components of photochemical pollution in addition to ozone, especially when investigating subtle, long-term effects on vegetation.  相似文献   

10.
A one-year survey of air quality has been carried out at two southern California inland locations, Perris and Palm Springs (90 km E-SE and 120 km E of Los Angeles) to evaluate transport of photochemical smog from the Los Angeles area and to assess population exposure to toxic air pollutants in the Coachella Valley and eastern Riverside County. Air pollutants measured included formaldehyde, acetaldehyde, nitric acid, and peroxyacetyl nitrate (PAN). Acetic acid was also measured as part of the time-integrated method employed to measure PAN. In addition, intensive studies were carried out at both locations and included measurements of aldehydes, nitric acid, PAN, peroxypropionyl nitrate (PPN), methylchloroform and tetrachloroethylene.

Maximum concentrations of HCHO, CH3CHO, HNO3, PAN, PPN, CH3COOH and C2CI4 were 26, 21, 4.5, 7.6, 0.42, 6.6 and 0.29 ppb in Palm Springs and 15, 30, 6.3, 9.1, 0.73, 7.8 and 0.43 ppb in Perris. Pollutant concentrations measured in Palm Springs and Perris are compared to those measured in the Los Angeles area, and are discussed in terms of formation and removal during transport.  相似文献   

11.
It is important in the implementation of the air quality standard for ozone/oxidants and non-methane hydrocarbons to develop quantitative relationships between these pollutants in air quality regions. Analyses for ambient air non-methane hydrocarbon give a direct measure of the progress in control of hydrocarbon emissions and in the reduction of oxidant/ozone concentration levels. Total hydrocarbon concentrations are much more available than non-hydrocarbon levels. An empirical relationship between total hydrocarbons and non-methane hydrocarbons has been obtained from measurements at both west and east coast sites in the U. S. The comparability of measurements from flame ionization analyzers and gas chromatography has been demonstrated. Either analytical technique can be applied to samples collected at monitoring sites to provide the 6-9 A.M. non-methane hydrocarbon aerometric results specified in the air quality standards.  相似文献   

12.
In this study, we present measurements of ozone (O3) concentrations both on the surface and aloft, taken at sites appropriately located to give information about the effect of the local flows, such as the sea breeze circulation, on the air quality of Athens. Profiles of O3 and other meteorological parameters of the atmospheric boundary layer were obtained at a location in the center of Athens. Surface measurements of O3 were conducted in a number of other locations which included the shoreline and an island. The measurements confirmed well known models for the effect of sea breeze on photochemical pollutants and the diurnal variation of O3 in the evolving atmospheric boundary layer and showed that pollutants released in the evening and early morning hours are advected offshore where they generate O3 which in turn is advected back to the city by the sea breeze. They also showed that Athens pollutants are found in considerable concentrations in Aegina and outside the main basin to the north. The results of this study demonstrate the need to take into account advection patterns in any attempt to formulate pollution abatement strategies for sites with strong local circulations such as the Athens basin.  相似文献   

13.
The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems.  相似文献   

14.
This paper is directed to those concerned with the effect of changes in lead consumption by motor vehicles on atmospheric lead concentrations. Atmospheric lead concentrations in the Los Angeles area have been found to be dependent on lead consumption, meteorology, and source-receptor relationships. Mathematical relationships between these variables for selected Los Angeles area sites are derived. Los Angeles County experienced a 50% reduction in annual average atmospheric lead concentrations between 1971 and 1976, which was found to be due to a decrease in vehicular emissions of lead. Seasonal variations in lead concentration were found to be mainly a product of seasonal variations in weather. Projections of atmospheric lead concentrations for the next decade show a continued downtrend, based on regulation of fuel lead content and introduction of additional catalyst equipped vehicles. By the mid-1980's most locations in the Los Angeles area are expected to attain the California and federal ambient air quality standards for lead, 1.5 micrograms per cubic meter, based on a monthly average.  相似文献   

15.
A tracer technique using certain of the rare earth elements which are easily activated by neutrons has been developed for the analysis of air pollution problems. Studies employing these tracers were made to determine whether the available meteorological dispersion models can be used effectively to describe pollution emissions from selected industries in the vicinity of Albany, Oregon. The Gaussian plume model was found to be satisfactory for the moderately intense turbulence fields which characterize Stability Types B, C, and D, including cases in which the pollution was trapped by an inversion layer aloft. For sources near ground level, however, it was necessary to make allowance for urban influences on plume dispersion. A box model best described the observed dispersal pattern when the upward penetration of the very intense turbulence of Stability Type A was limited by an inversion layer aloft. These meteorological models were applied using a “blind” experimental procedure to predict the emission rates of the effluent from multiple sources of air pollution in the Albany area. It was found that these techniques can be used to predict the rate of emission within a factor of two for multiple sources consisting of three stacks.  相似文献   

16.
Carbon bond (CB-III) fractions for non-methane organic carbon compounds (NMOC) measured in the background alrmass adverted into several urban areas in the eastern and southern United States are reported. These, together with ozone measured aloft, were used In an Empirical Kinetic Modeling Approach (EKMA) to model urban ozone production and urban ozone control strategies.

Over a range of zero to double the mean of the measured NMOC concentrations aloft (0 to 70 ppbC) and zero to the highest ozone levels recorded aloft (0 to 65 ppb), it was found that urban ozone production and control strategies were relatively insensitive to NMOC from aloft. However, urban ozone production was sensitive to ozone from aloft, while ozone control strategies were insensitive to ozone from aloft.  相似文献   

17.
Lead concentrations in air were measured at 12 sites in Detroit, New York and Los Angeles as part of a program to relate automobile emissions and polynuclear aromatic hydrocarbons in air. The information on lead is reported separately because of the current interest in lead as an air pollutant. Sampling was conducted by means of a large “absolute” filter and equipment contained in a step-van truck. A portion of the filter was macerated in nitric acid and the lead determined spectrographically. The combined annual average lead concentration for four sites in metropolitan Los Angeles was approximately 40% higher than the combined averages of either the five sites in metropolitan New York or the three sites in metropolitan Detroit. Concentrations ranged from 0.4 ug/M3 at Santa Monica, to 18.4 ug/M3 at a Los Angeles Freeway Interchange. Concentrations were generally highest in freeway areas, intermediate in commercial areas, and lowest in residential areas. They were about 40% higher in daytime than at night. Average lead concentrations were highest during autumn in New York and winter in Los Angeles reflecting an inverse relationship with wind speed. Correlation coefficients between lead and carbon monoxide, at all sites, were statistically non-zero with 99% confidence and varied from 0.75 to 0.96. Lead concentrations in this study were higher than concentrations reported by others for Detroit, New York, and Los Angeles, presumably because sampling in this study was closer to traffic. However, concentrations in this study were lower than in-traffic concentrations given in the literature.  相似文献   

18.
High ozone concentrations, often in excess of the national ambient air quality standard for photochemical oxidants, have been measured simultaneously in urban and rural areas of New York State. Average daily rural ozone concentrations were found to correlate well with daily maximum urban ozone concentrations suggesting a common source. Estimations of the quantity of ozone advectively transported into New York State are more than an order of magnitude greater than estimations of the potential photochemical generation of ozone from hydrocarbon emissions within New York State. It is suggested thai the high rural ozone levels are not primarily due to the transport of ozone and ozone precursors from olher urban areas, but are rather due to natural phenomena such as photochemical generation from naturally occurring precursors or transport of ozone from the stratosphere to the troposphere. The effectiveness of a hydrocarbon control strategy for New York State to meet the ambient air quality standard for photochemical oxidants when background levels themselves may be above the standard is questioned.  相似文献   

19.
All of the important oxidants in polluted air are formed there by chemical reactions which occur among the primary pollutants. The most abundant of these oxidants is ozone which is formed in a cycle involving nitric oxide, nitrogen dioxide, atmospheric oxygen, and hydrocarbons. This ozone is best understood, not as a reaction product, but as an intermediate in steady-state concentration between formation and disappearance reactions. Hydrocarbons permit accumulation of ozone by reacting to scavenge the nitric oxide which would otherwise remove the ozone. The amount of ozone which can be formed in ambient polluted air is limited to about 1 ppm because these scavenging reactions become less effective when the nitric oxide concentration becomes very small. The peroxyacyl nitrates are a group of oxidants which result from reactions between oxides of nitrogen and organic pollutants. Olefinic and aromatic hydrocarbons make the largest contribution to PAN formation; saturates contribute little if any. The role of nitrogen dioxide and other oxidizing agents is also discussed.  相似文献   

20.
The observed ranges in nonmethane organic compound (NMOC) concentrations, NMOC composition and nitrogen oxides (NOX) concentrations have been evaluated for urban and nonurban areas at ground level and aloft of the contiguous United States. The ranges in NMOC to NOX ratios also are considered. The NMOC composition consistently shifts towards less reactive compounds, especially the alkanes, in air parcels over nonurban areas compared to the NMOC composition near ground level within urban areas. The values for the NMOC to NOX ratios, 1.2 to 4.2, in air aloft over nonurban areas are lower than in air at ground level urban sites, ≥8, and much lower than in air at ground level nonurban sites, ≥20.

The layers of air aloft over a number of nonurban areas of the United States tend to accumulate NOX emissions from the tall stacks of large fossil fuel power plants located at nonurban sites. During the night into the morning hours, the air aloft is isolated from any fresh NMOC emissions predominately coming from near surface sources. Conversely, during this extended period of restricted vertical mixing, air near the surface accumulates NMOC emissions while this air is isolated from the major NOX sources emitting aloft. These differences in the distribution of NMOC and NOX sources appear to account for the much larger NMOC to NOX ratios reported near ground level compared to aloft over nonurban areas.

Two types of experimental results are consistent with these conclusions: (1) observed increases in surface rural NOX concentrations during the morning hours during which the mixing depth increases to reach the altitude at which NOX from the stacks of fossil fuel power plants is being transported downwind; (2) high correlations of total nitrate at rural locations with Se, which is a tracer for coal-fired power plant NOX emissions.

The implications of these conclusions from the standpoint of air quality strategies are suggested by use of appropriate scenarios applied to both urban and regional scale photochemical air quality models. The predictions from urban model scenarios with NMOC to NOX ratios up to 20 are that NOX control will result in the need for the control of more NMOC emissions than necessary in the absence of NOX control, in order to meet the O3 standard. On a regional scale, control of NOX emissions from fossil fuel power plants has little overall effect regionally but does result on a more local scale in both small decreases and increases in O3 concentrations compared to the baseline scenario without NOX control. The regional modeling results obtained to date suggest that NOX control may be effective in reducing O3 concentrations only for a very limited set of conditions in rural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号