首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the annual reproductive cycles of the three dominant Calanus species, C. finmarchicus, C. glacialis and C. hyperboreus, in Disko Bay (West Greenland) in relation to seasonal phytoplankton development. Relative abundance of females, copepodite stage V (CV) and males, and the developmental stage of the female gonad were examined from plankton samples collected at weekly to monthly intervals from May 1996 to June 1997 with a WP2 net or a pump. During spring and summer, egg production rates were determined. Females of all three species were present year round. Maximum relative abundance was reached by C. hyperboreus females at the beginning of February, by C. glacialis in mid-February, and by C. finmarchicus in April. All three species reproduced successfully in Disko Bay. Their reproductive cycles were considerably different with respect to the timing of final gonad maturation and spawning, and hence in their relation to seasonal phytoplankton development. In all three species, early gonad development took place during winter, before living food became plentiful, suggesting that these processes were largely food independent. Final gonad maturation and spawning in C. finmarchicus was related to the phytoplankton concentration, reflecting that final gonad maturation processes are food dependent in this species. C. glacialis females matured and spawned prior to the spring bloom. Our results indicate that first internal lipid stores and later ice alga grazing supplied final gonad maturation and egg production. Maximum egg production rates of C. glacialis were found in spring and summer, when the chlorophyll a concentration was high. Mature female C. hyperboreus were found from February until mid-April, when the chlorophyll a concentration was still low. In this species, reproductive activity was decoupled from phytoplankton development, and final maturation processes and spawning were solely fuelled by internal energy stores.  相似文献   

2.
This study examines experimentally how water movement may alter epiphyte-grazer systems in intertidal seagrass beds. Field observations in the Sylt-Rømø Bay (German Wadden Sea, SE North Sea) showed that the biomass of seagrass epiphytes was highest on seagrasses exposed to water movement, whereas at sheltered sites the epiphyte cover was negligible. In contrast, the seagrass shoot density and aboveground biomass was comparably sparse and the abundance of Hydrobia ulvae was extremely low at exposed areas, but showed maximum values at sheltered seagrass beds. Cross transplantation experiments and enclosure experiments between sheltered and exposed seagrass beds showed that adhering snails were washed off from seagrasses soon after transplantation into an exposed seagrass bed, and epiphytes started to grow. After 4 weeks the epiphyte biomass was similar to the that of the adjacent exposed seagrass bed. When heavily epiphytised seagrasses were transplanted from exposed into sheltered areas, the epiphytes were completely grazed down by immigrating snails within a week. Experiments carried out by means of an in situ "three-current-flume", modifying the entire current velocity, showed that snail density was significantly negatively correlated with increasing current velocity, whereas epiphyte biomass showed a significant positive correlation with current speed. These results suggest a cascading impact of hydrodynamics on an epiphyte-grazer system in intertidal seagrass beds, by directly affecting the density of grazers and indirectly leading to enhanced epiphyte growth, thereby inhibiting seagrass development. Additionally it shows that cascading effects within the trophic web cannot only be triggered by biotic interdependencies, but can also be caused by physical factors.  相似文献   

3.
The location of spawning grounds of the squid Loligo vulgaris reynaudii (D'Orbigny) was investigated in the years 1988–1990. At least 39 spawning sites were found during this period along the inshore areas of the Eastern Cape coastline between Algoa Bay and Plettenberg Bay. The substrate chosen for egg laying was mostly fine sand or flat reef, frequently in large and relatively shettered bays. Spawning was found to occur sporadically throughout the year, and some spawning sites were used repeatedly within a particular year and in subsequent years. Squid migrate in discrete schools separated by sex in the vicinity of the spawning sites; these schools mix during spawning. Mating and egg deposition behaviour is described from observations made on the spawning grounds. Cannibalism was seen on a number of occasions, but no post-spawning mortality was recorded. Egg beds consisted mostly of large concentrations of egg strands (>3 m in diameter), with smaller aggregations of one to ten egg strands surrounding these, with single strands in the immediate vicinity. Three basic patterns of echotraces were identified and interpreted according to diving observations. These patterns were classified as loose patches, dense patches, and complex patterns. The first two represent non-spawning schooling patterns and the third, mating and egg laying behaviour. This observation led to the general classification of squid aggregations: schools (non-spawning mode) and concentrations (spawning mode). Concentrations as far as Loligo vulgaris reynaudii was concerned were further divided into two patterns: suprabenthic and benthic (spawning) squid.  相似文献   

4.
Egg production rate of the copepod Acrocalanus inermis was measured at 3 stations in south Kaneohe Bay, Hawaii in August 1977 and July–October 1979. The egg production rates were significantly variable spatially, but temporal variability over a time scale of weeks was larger than spatial variability. In three experiments, egg production rates were correlated with ambient concentrations of particulate matter, a crude estimate of food concentration. Most values for egg production rates ranged between 5 and 16.9 eggs female-1 d-1.  相似文献   

5.
Adults of motile intertidal invertebrates are able to seek shelter to avoid environmental stress associated with low tides, but embryos within egg masses are effectively sessile for the duration of their encapsulation. Gastropod egg masses from 34 taxa on two rocky shores in SE Australia (34°37′08″S, 150°92′03″E and 34°35′45″S, 150°53′20″E) were surveyed over 2 years (June 2002–May 2004) to test the hypothesis that eggs are deposited in patterns that minimize exposure to environmental stress. Egg masses were expected to be predominantly deposited in shaded habitats not prone to environmental extremes. It was also anticipated that the deposition of egg masses in habitats exposed to UVR, desiccation, and/or extremes in temperature would occur when exposure to these abiotic factors was minimized. Among the taxa investigated, only four species spawned in full sun (Bembicium nanum, Nerita morio, Siphonaria zelandica and S. denticulata). Summer had the highest UVR index, water temperature, and air temperature as well as the lowest daytime tides. Univariate and multivariate analyses confirmed that egg mass abundance was highest during summer, with no change in egg mass size. This study shows that those species depositing egg masses on the surfaces of rock platforms do not adjust the seasonal timing or macrohabitat location of their spawning to avoid physiologically stressful conditions, particularly UVR. Alternate reasons for the evolution of egg mass deposition behavior in apparently sub-optimal habitats are discussed, and it is almost certainly the complex interplay of a variety of highly species-specific factors that is responsible for the patterns observed.  相似文献   

6.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

7.
Life history and reproductive strategies influence population dynamics at the inter- and intra-specific level. Environmental conditions suitable for gonad development and spawning, the reproductive range, may be a smaller portion of the broader species distribution. The only known breeding population of veined rapa whelks (Rapana venosa) in North America is in Chesapeake Bay, USA. There is considerable interest in the potential reproductive range of this non-indigenous species given the rapa whelk’s negative impacts on commercial shellfish species in both its native and introduced ranges. Weight-specific reproductive output is described for wild caught Chesapeake Bay rapa whelks maintained in flow-through mesocosms for 2 years. Measured reproductive output within and between egg capsule deposition seasons (years) in relation to water temperature, salinity, daylength, and female size is used to describe the rapa whelk’s reproductive range. Egg capsule production is influenced by seasonal and absolute water temperatures as well as seasonal daylength cycles. Egg capsule deposition by Chesapeake Bay rapa whelks begins at water temperatures of approximately 18°C and continues for 11–15 weeks. Forty to 70% of female whelks deposited egg capsules in most weeks during this season, producing 150–200 egg capsules female−1 week−1. Water temperatures >28°C caused reduced egg capsule production relative to temperatures of 20–25°C. Egg capsule production was positively related to seasonal changes in daylength, and two peaks of egg capsule deposition were observed in the 2001 and 2002 deposition seasons. The combination of declining daylength and higher water temperatures in late summer was associated with the cessation of egg capsule deposition. A lower average weight specific reproductive output in 130–145 mm SL rapa whelks (average 12 ± 1%) than in 90–106 mm SL rapa whelks (average 22 ± 1% of body weight) may reflect a life history that balances the physiological costs of maintaining a large body mass with the production of many planktonic larvae from multiple clutches of egg capsules per breeding season over a 10–15-year lifespan. Estimates of the cumulative day-degree requirements corresponding to the annual initiation of egg capsule deposition were 238 and 236 for 2001 and 2002, respectively. Reproductive output and day-degree requirements for Chesapeake Bay rapa whelks were similar to values calculated from previous studies of native muricids (Eupleura caudata and Urosalpinx cinerea). A latitudinal range of 30–41° (N and S) is predicted as the realized reproductive range for rapa whelk populations on the basis of the day-degree requirements for native whelks and reproductively active invasive rapa whelk populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The effects of ultraviolet radiation (UVR), desiccation and conditions in tidal pools on embryonic survival were examined for two common pulmonate limpets that lay intertidal benthic egg masses on rocky shores in New Zealand: Benhamina obliquata and Siphonaria australis. Field surveys and manipulative experiments were conducted between December 2006 and September 2007 in the Wellington region of New Zealand (41°17′S, 174°47′E). Egg mass deposition sites in the field were species-specific: B. obliquata deposited eggs primarily in shaded crevices, whereas S. australis predominantly deposited egg masses in the sun and in tidal pools. For both species, however, embryonic mortality was greater in egg masses that had been in full sun compared to shade. For S. australis, there was also high mortality in egg masses in tidal pools or desiccated compared to those that remained submerged in flowing seawater at low tide. In outdoor experiments, embryonic mortality was also always greatest for egg masses exposed to full sun, and lowest for those in shaded treatments. Mortality was also higher if egg masses were in simulated tidal pools, and for S. australis, if desiccated, compared to those submerged in flowing seawater. Periods of particularly sunny conditions with high temperatures also resulted in higher overall mortality. Finally, egg masses of both species that were initially deposited in the shade had greater mortality in response to subsequent UV exposure compared to egg masses initially deposited in full sun. Results from this study suggest that the egg masses of these two species are highly vulnerable to UVR, as well as other intertidal stressors. Embryos of both of these species may be at risk of high mortality particularly during summer when extreme conditions of UV intensity and high temperature coincide with low tide cycles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
K. Swadling 《Marine Biology》2001,139(3):597-603
The spatial distribution and population structure of two dominant ice-associated copepods, Drescheriella glacialis and Paralabidocera antarctica, were studied during winter at nine locations in east Antarctic fast ice. These species accounted for at least 90% of the total metazoan abundance at each location. Abundances were high, reaching 175 individuals l-1 (190,000 m-2) for D. glacialis and 660 l-1 (901,000 m-2) for P. antarctica. These abundances were probably partly supported by the high biomass of ice-algae (Pearson correlation coefficient, r=0.75), as indicated by chlorophyll-a concentrations (1.7-10.1 µg l-1). The population structures of each species suggested very different life-history strategies. All developmental stages of D. glacialis were isolated from the ice cores, including females with egg sacs, supporting the hypothesis that this species reproduces in the sea ice during winter. This strategy might assist D. glacialis in leading a continually colonising existence, whereby it responds opportunistically to the availability of favourable habitat patches. The populations of P. antarctica were composed primarily of nauplii (>99%), consistent with past observations of a synchronised life cycle for this species. The strong coupling of the developmental cycle of P. antarctica to the growth and decay of sea ice suggests that local extinctions might occur in areas where ice break-out is unpredictable.  相似文献   

10.
H. -J. Hirche 《Marine Biology》1989,103(3):311-318
Egg production of single female Calanus glacialis Jaschnov fed with Thalassiosira antarctica at super-abundant concentrations (>300 g C l-1) was determined over several weeks. Experiments were performed directly after collection from the East Greeland Current in June 1987 and 1988, and during resumed feeding after long-term starvation over 4 (October 1988), 4.5 (October 1987) and 6.5 (January 1988) mo. In addition, in June 1987, short-term starvation experiments of 5 and 15 d were conducted. Egg production was closely related to feeding in all experiments. While directly after collection eggs were produced within a few days, it took 2 wk (October 1987 and 1988) and 10 d (January 1988), respectively, to resume egg production after long-term starvation. During long-term starvation periods eggs were not laid. The decrease in total egg production with duration of starvation was due to decreasing clutch size and increasing spawning interval. In contrast, short-term starvation experiments only affected spawning interval. Interannual variability in egg production was high, with much higher clutch sizes in 1988. Average production rates in June 1988 correponded to 5% body C female-1 d-1, the maximum was 7.4% (1 274 eggs in 23 d). Carbon content of eggs was 0.40 g egg-1. C. glacialis is well adapted to pulsed food events in the Arctic by its longevity; its ability to preserve its reproductive potential over several months; its rapid mobilization of ovaries; and by its high egg production rates. The implication of prolonged spawning capacity on life cycle studies is discussed.  相似文献   

11.
M. Smale  W. Sauer  M. Roberts 《Marine Biology》2001,139(6):1095-1105
The interaction of a suite of predators with mating and spawning chokka squid (Loligo vulgaris reynaudii) was studied at inshore (<50 m) spawning grounds off South Africa. This study provides the first detailed records of predator-prey interactions of squids on their spawning grounds and is the first attempt to time disruptions caused by predators to the egg-laying behaviour of squids, thereby quantifying the perceived threat to the prey. The squids are focused on mate choice and reproduction while they aggregate over egg beds and they may be more vulnerable to predation than at other times. Their vulnerability to different predators in the field is examined and the tactics used against different predatory species are illustrated using recordings made with underwater video cameras. Predators recorded included two cephalopods (Octopus vulgaris and L. v. reynaudii), five teleosts (Pagellus bellotii natalensis, Spondyliosoma emarginatum, Pachymetopon aeneum, Cheimerius nufar and Pomatomus saltatrix), seven chondrichthyians (Squalus megalops, Mustelus mustelus, Carcharias taurus, Dasyatis brevicaudata, Gymnura natalensis, Poroderma africanum and P. pantherinum) and three marine mammals (Arctocephalus puscillus, Tursiops aduncus and Delphinus delphis). Analysis of behavioural interactions between predators and prey showed that predator disruption of egg laying may be quantified in terms of time. Marine mammals caused the most acute disruption, whereas other taxa had more chronic disruption effects because they spent more time on the spawning grounds. During November 1995, the suite of predators changed during the course of a 2-day period of underwater video recording, possibly because of an increase in water temperature. The hypothesis that predators would be concentrated around a spawning aggregation was tested by surveying the spawning ground using an underwater camera towed by a boat navigating with differential GPS. The results supported the hypothesis because predators were located only around the spawning sites. The serial spawning of chokka squids in recently upwelled water may reduce predation pressure. Furthermore, it may be difficult for predators to predict the specific spawning site on a particular day because squids disperse away from egg beds at night and use numerous spawning sites along the coast.  相似文献   

12.
Egg production and hatching success of the copepod Calanus finmarchicus was measured during spring and summer in the waters south-west of Iceland. Egg-production rates varied greatly, both temporally and spatially, with highest average rates found at a station with low chlorophyll-a concentrations (0.4 mg m-3). Excluding this high production rate from statistical analysis, the remaining egg-production rates were found to be positively correlated with phytoplankton biomass, as well as with parameters representing healthy phytoplankton condition, food quality and diatom-type fatty acids. Hatching success of eggs was negatively correlated with some saturated and monounsaturated fatty acids related to phytoplankton senescence.  相似文献   

13.
Knowledge of the pelagic vertical distribution of fish eggs is central for several aspects of fisheries science including fisheries recruitment and egg production studies. In modelling egg vertical distributions, variation in fish egg density is an important issue. Though variation in egg density between individual eggs has been reported, evidence for significant spatial variation in egg density is novel. The present study provides evidence that egg density of anchovy (Engraulis encrasicolus) varies spatially across spawning sites in the Bay of Biscay, depending on the regional scale variation in sea water properties due to river discharge. We measured the density of the eggs using a density gradient column at 17 stations in 2005 and 2006 as well as their diameter. At station, the variability in the individual egg density was statistically distributed according to a Gaussian probability function. Significant variation in the mean egg density was observed across stations. Mean egg density displayed a significant correlation with sea surface salinity. Results are discussed in light of the mechanisms determining the egg density.  相似文献   

14.
The investigation was carried out from 62°N to 73°N and from 14°E to 11°W in the Norwegian Sea during 19 June-12 July 1997. Regional differences in the phase of the seasonal development of the plankton community were evident, most pronounced across the Arctic front. In the Coastal and eastern Atlantic domains, post-bloom conditions prevailed, characterised by low chlorophyll a (chl a) levels and a phytoplankton assemblage dominated by coccolithophorids and small flagellates. During the study period, egg production rates of Calanus finmarchicus were low (<10 eggs female-1 day-1), older copepodite stages dominated, and the seasonal descent to deeper waters had started. In the Arctic domain, bloom conditions were evident by high chl a levels and a high abundance of large diatoms. Egg production rates were higher (a maximum of 29 eggs female-1 day-1), but the dominance of stages CI-CIII indicated that considerable spawning had already occurred prior to the spring bloom. The seasonal descent had barely started. Both invertebrate and fish predators were most abundant in the Coastal and eastern Atlantic domains, with abundance strongly decreasing north-westwards. No tight relationship between total abundance of invertebrate or fish predators and that of C. finmarchicus was apparent. However, a weak, but significant, relationship between abundance of young stages of chaetognaths and Euchaeta spp. versus young stages of C. finmarchicus was found, indicating that these invertebrate predators develop parallel to the development of the new cohort of C. finmarchicus. In early summer, C. finmarchicus had reached overwintering stages, and had started to accumulate in deeper waters in areas with the highest abundance of horizontally migratory planktivorous fish.  相似文献   

15.
The use of the egg production rate of herbivorous copepods as an important parameter for understanding population dynamics and as an index of secondary production requires knowledge of the regulatory mechanisms involved and of the response to changes in food concentrations and temperature. Furthermore, the effects of season and generation on egg production have to be studied. In this context data are presented for Calanus finmarchicus from the northern North Atlantic. Prefed and prestarved females were exposed to different concentrations of the diatom Thalassiosira antarctica over 1 to 2 wk at 0 or 5 °C, and egg deposition was controlled daily. Egg production increased with higher food concentrations, but much less when prestarved. The effect of temperatures between −1.5 and 8 °C on egg production was studied in females maintained at optimum feeding conditions. Egg production rate increased exponentially over the whole temperature range by a factor of 5.2, from 14.2 to 73.4 eggs female−1 d−1, and carbon-specific egg production by 4, from 2.1 to 8.5% body C d−1. The response to starvation was also temperature dependent. In both the temperature and feeding experiments egg production rate was regulated mainly by changes of the spawning interval, while changes of clutch size were independent of experimental conditions. Different responses to optimum feeding conditions were observed in females collected in monthly intervals on three occasions between March and May. The March females deposited more clutches than the April and May females. In May, >50% of the females did not spawn at all. Maximum egg production rates were never >25% of the rate expected at 5 °C, indicating endogenous control of egg production in addition to food and temperature effects. Received: 4 August 1996 / Accepted: 11 September 1996  相似文献   

16.
Females of the Norway lobster Nephrops norvegicus (L.) incubate their eggs under the abdomen for a period of several months. We estimated the individual fecundity of N. norvegicus (1) before spawning, and (2) at the end of the incubation period. From these two relationships, we then calculated the average egg loss. Egg loss seems to be relatively higher for small females than for large ones. The mean egg loss estimated for the Bay of Biscay (45%) differs from the only other existing value (75%) calculated by other authors for Portuguese waters. Egg loss may regulate stock-density, and may be a mechanism intervening in stock-recruitment. In order to estimate the fecundity per recruit, fecundity at the end of the incubation period must be used: this takes into account the rate of egg loss as a function of female length.

Contribution No. 721, du Centre Océanologique de Bretagne  相似文献   

17.
Penaeid prawns were sampled with a small seine net to test whether catches of postlarvae and juveniles in seagrass were affected by the distance of the seagrass (mainly Zostera capricorni) from mangroves and the density of the seagrass in a subtropical marine embayment. Sampling was replicated on the western and eastern sides of Moreton Bay, Queensland, Australia. Information on catches was combined with broad-scale spatial information on the distribution of habitats to estimate the contribution of four different categories of habitat (proximal dense seagrass, distal dense seagrass, proximal sparse seagrass, distal sparse seagrass) to the overall population of small prawns in these regions of Moreton Bay. The abundance of Penaeus plebejus and Metapenaeus bennettae was significantly and consistently greater in dense seagrass proximal to mangroves than in other types of habitat. Additionally, sparse seagrass close to mangroves supported more of these species than dense seagrass farther away, indicating that the role of spatial arrangement of habitats was more important than the effects of structural complexity alone. In contrast, the abundance of P. esculentus tended to be greatest in sparse seagrass distal from mangroves compared with the other habitats. The scaling up of the results from different seagrass types suggests that proximal seagrass beds on both sides of Moreton Bay provide by far the greatest contribution of juvenile M. bennettae and P. plebejus to the overall populations in the Bay.Communicated by M.S. Johnson, Crawley  相似文献   

18.
Previous molecular phylogenetic analyses have shown that five tropical lucinid species living in or near Thalassia testudinum seagrass beds are colonized by the same bacterial symbiont species. In addition, a new lucinid species belonging to the genus Anodontia, which inhabits reducing sediment found near seagrass beds and in mangrove swamps, has been included in the present study. Endosymbiosis in Anodontia alba was examined according to symbiont phylogenetic and gill ultrastructural analysis. Phylogenetic analysis showed that partial 16S rDNA sequences of A. alba- and Codakia orbicularis-symbionts were 100% identical at all nucleotide positions determined, suggesting that A. alba also harbors the same symbiont species as C. orbicularis (and, consequently, as C. orbiculata, C. pectinella, Linga pensylvanica and Divaricella quadrisulcata). Based on light and electron microscopy, the cellular organization of the gill filament appeared similar to those already described in other lucinids. The most distinctive feature is the lack of "granule cells" in the lateral zone of A. alba gill filaments. In order to confirm the single-species hypothesis, purified fractions of gill bacterial symbionts obtained from the gills of each of the six tropical lucinids cited above were used to infect aposymbiotic juveniles of C. orbicularis. In each case, aposymbiotic juvenile batches were successfully infected by the gill-endosymbiont fractions, whereas, during the experiments, juveniles from the negative control were still uninfected. These experimental data confirm the phylogenetic data and also demonstrate that chemoautotrophic bacterial endosymbionts from their host cells can colonize aposymbiotic juveniles. The conclusion also follows that intracellular gill-endosymbionts still have the capacity to recognize and colonize new host generations. Lucinids provide a unique model for the study of sulfide-oxidizing symbiosis, even if symbionts remain unculturable.  相似文献   

19.
Female blue crabs (Callinectes sapidus Rathbun) with mature embryos have a spawning migration in which they: (1) undergo ebb-tide transport for movement seaward from estuaries, (2) release their larvae, and (3) reverse direction by undergoing flood-tide transport for up-estuary movement. The study determined whether ebb-tide transport during the spawning migration is based upon an endogenous rhythm in vertical migration. Under constant conditions in a rectangular container, which limited horizontal and vertical movements, females with young and mature embryos had circatidal rhythms (periods=12.11-12.95 h) in migratory restlessness (swimming activity) and egg maintenance behavior (abdominal pumping). However, the rhythms were out of phase, as migratory restlessness occurred during the expected time of ebb tide in the field, and egg maintenance behavior, during the time of flood tide. Under constant conditions in vertical columns (1.32 m high), crabs with mature embryos had a circatidal rhythm (periods=12.2-13.7 h) in which they had frequent bouts of swimming to the surface of the column during the expected time of ebb tide in the field and remained on the bottom during the time of flood tide. This rhythm was not present in crabs with young embryos and disappeared after larval release. Thus, an endogenous rhythm in vertical migration does underlie the ebb-tide transport behavior of ovigerous blue crabs with mature embryos during their spawning migration.  相似文献   

20.
Several harpacticoid copepod species are adapted to an epiphytic lifestyle. Previous studies on tropical seagrass meiofauna mainly focussed on the epiphytic communities and neglected the benthic component. The present study aims to document the benthic harpacticoid copepod communities sampled from different sediment depth horizons adjacent to five seagrass species in the intertidal and subtidal zone of a tropical seagrass bed (Gazi Bay, Kenya). Two benthic copepod communities could be identified mainly based on the tidal position of the samples: a first community was collected near the intertidal seagrasses Halophila ovalis and Halodule wrightii; a second community occurred near the subtidal seagrasses Thalassia hemprichii, Syringodium isoetifolium and Halophila stipulacea. The first community was mainly determined by sediment characteristics (e.g. skewness), while the second community was split off based on organic matter content (% TOM), nutrient and pigment values. A subtle combination of horizontal and vertical niche segregation was reported for the dominant copepod families. Species of the families Thalestridae, Laophontidae and Diosaccidae were structured by tidal position and showed a strong preference for the subtidal zone. The opposite strategy, i.e. a clear preference for the intertidal zone, was found for copepods belonging to the families Paramesochridae and Canuellidae. In addition, Apodopsyllus africanus (Paramesochridae) was well-adapted to stress and was concentrated in the deeper sediment layers near the subtidal seagrasses. On the other hand, Canuellidae, as filter feeders, were concentrated in the upper centimetres of the sediment. The families Ectinosomatidae and Cletodidae did not show any vertical or horizontal segregation. On the species level, however, clear horizontal niche segregation was detected for the family Cletodidae. In addition to the reported ecological results, the study material was used to evaluate different niche definitions. We found tidal position to be the most important factor forcing harpacticoids to specialise. Sediment depth horizon was less powerful in dividing the families into different guilds (from specialists to generalists) based on standardised niche breadth. The present study documents the subtle habitat partitioning of co-existing species in a limited area and its role in sustaining high biodiversity in the community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号