首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Road transport produces significant amounts of emissions by using crude oil as the primary energy source. A reduction of emissions can be achieved by implementing alternative fuel chains. The objective of this study is to carry out an economic, environmental and energy (EEE) life cycle study on natural gas-based automotive fuels with conventional gasoline in an abundant region of China. A set of indices of four fuels/vehicle systems on the basis of life cycle are assessed in terms of impact of EEE, in which natural gas produces compressed natural gas (CNG), methanol, dimethylether (DME) and Fischer Tropsch diesel (FTD). The study included fuel production, vehicle production, vehicle operation, infrastructure and vehicle end of life as a system for each fuel/vehicle system. A generic gasoline fueled car is used as a baseline. Data have been reviewed and modified based on the best knowledge available to Chongqing local sources. Results indicated that when we could not change electric and hydrogen fuel cell vehicles into commercial vehicles on a large scale, direct use of CNG in a dedicated or bi-fuel vehicle is an economical choice for the region which is most energy efficient and more environmental friendly. The study can be used to support decisions on how natural gas resources can best be utilized as a fuel/energy resource for automobiles, and what issues need to be resolved in Chongqing. The models and approaches for this study can be applied to other regions of China as long as all the assumptions are well defined and modified to find a substitute automotive energy source and establish an energy policy in a specific region.  相似文献   

2.
The general results of material flow analyses for agricultural farms presented in Part I are now specified for three farms in Lower Saxony. For this, the existing material flow net for winter wheat is extended by the crops of winter barley, winter rye, summer barley, rape, sugar beets and potatoes. The assessment is essentially done regarding the impact categories of resource depletion, cumulated energy demand (CED) and emissions to atmosphere. Besides the assessment of single farms or crops, also the comparison, of different agricultural production systems is possible, whereby the choice of the functional unit and the basis of comparison (with reference to input or output) is of major importance. Additionally, as for agricultural means of production, the material flows and emissions resulting from the provision of carbolime — an often employed carbonate fertiliser as for sugar-beet cultivation — are derived completely within this article. Furthermore, sensitivity analyses on the subject of detail intensity of agricultural basic data are presented for the example of machine employment. The material flow nets are regarded as transferable to other farms with similar crop rotation systems, with an appropriate expenditure of information gathering and parameterisation. The complete net can be used as a module within further investigations, e.g. of the industrial processing of food, as a pre-production chain for agricultural resources being part of the production process (winter wheat — mill, brewing barley — brewery, sugar beets — sugar-factory).  相似文献   

3.
A life cycle assessment (LCA) method was used to examine the environmental impact of the winter wheat-summer maize production system on the North China Plain. The LCA considered the entire system required to produce 1 ton each of winter wheat and summer maize. The analysis included raw material extraction and transportation, agrochemical production and transportation, and arable farming in the field. First, all emissions and resource consumption connected to the different processes were listed in a life cycle inventory (LCI) and related to a common unit (1 ton of grain). Subsequently, a life cycle impact assessment (LCIA) was conducted, in which the inventory data were aggregated into indicators for environmental effects, including energy depletion, climate change, acidification, aquatic eutrophication, human toxicity, aquatic and terrestrial ecotoxicity. For winter wheat systems, energy depletion and acidification were the most relevant environmental impacts, and energy depletion and aquatic eutrophication were the primary concerns for summer maize systems. The results revealed that the most important source of environmental impact in the winter wheat-summer maize production system in Huantai County was the production and application of nitrogen fertilisers. The environmental impacts of winter wheat were much stronger than those of summer maize due to higher inputs and lower use efficiency of agrochemicals.  相似文献   

4.
There is an increasing need to describe cyanobacteria bloom dynamics using ecosystem models. We consider two fundamentally different ways how cyanobacteria are currently implemented: a simple approach without explicit consideration of the life cycle which assumes that cyanobacteria grow due to nitrogen fixation alone and an advanced approach that computes the succession of four different stages of the cyanobacteria life cycle based on internal quotas of energy and nitrogen. To qualitatively and quantitatively intercompare these different approaches and with observations, we use the Baltic Sea ecosystem model ERGOM coupled to the one-dimensional water column model GOTM. Four experiments are carried out: three, using the simple approach with either (a) a prescribed constant minimum production, (b) no minimum value or (c) a prescribed constant minimum concentration, and one with (d) the full predictive life cycle. The model data of 35 years (1970-2005) are analyzed for the timing of the bloom, the interannual variability, the annual mean nitrogen fixation rates and the effect of cyanobacteria on eukaryotic phytoplankton. The results show significant differences. In the climatological seasonal mean, only the advanced approach which resolves the life cycle produces a realistic bloom onset and duration. The interannual variability of blooms is unrealistically small in the experiments with a prescribed minimum value. Annual mean nitrogen fixation rates diverge by up to 30% between the four model solutions. Finally, the representation of the cyanobacteria also influences the seasonal cycle of eukaryotic phytoplankton, i.e., flagellates. This study demonstrates that the way how cyanobacteria are implemented in coupled biological-physical models strongly determines the fluxes into the system and between the individual compartments.  相似文献   

5.
When discussing strategies for realising an environmental friendly agricultural production, there are methods for quantifying environmental effects which do not originate in agricultural contexts. For instance, the methodology of Life Cycle Assessment is mainly developed from analyses of industrial production lines and products. Substance flow analyses in agriculture contain a complete analysis of agriculturally caused substance and energy flows, to which certain environmental effects are assigned, and also an assessment of these effects. For the provision of production means, balancing agricultural production procedures includes the extraction of energy sources and mineral resources from their reservoirs. The growth phase of the crops regarded (cereals, sugar beet, rape) is described depending on the nutrients nitrogen, phophor, potassium and calcium. The nitrogen flux within the system plant-soil-atmosphere is recorded referring to its temporal dynamic. In the framework of this study, selected environmental effects of agricultural production procedures of winter wheat are calculated regarding different conditions of locations and are supplemented by declining scenario simulations. Essential features of the structure of the substance flow net, which is implemented for the calculation and which can be used completely or as for single modules for further studies, are explained. Basing on selected categories of effectiveness, ecological optimisation potentials of varying agricultural provision of production means and procedures are estimated within the whole context of provision. Thereby, the effects of a reduced employment of fertilisers, of a change as for the kind of fertiliser and of the region of origin of the N-fertiliser, as well as variations concerning mechanical work in the fields are outlined for the cultivation of winter wheat.  相似文献   

6.
In this paper, a quantitative life cycle model for carbon emission accounting was developed based on the life cycle assessment (LCA) theory. A residential building in Sino-Singapore Tianjin Eco-city (Tianjin, China) was selected as a sample, which had been constructed according to the concept of green environmental protection and sustainable development. In the scenario of this research, material production, construction, use and maintenance, and demolition phases were assessed by building carbon emission models. Results show that use and maintenance phase and material production phase are the most significant contributors to the life cycle carbon emissions of a building. We also analyzed some factor influences in LCA, including the thickness of the insulating layer and the length of building service life. The analysis suggest that thicker insulating layer does not necessarily produce less carbon emissions in the light of LCA, and if service life of a building increases, its carbon emissions during the whole life cycle will rise as well but its unit carbon emission will decrease inversely. Some advices on controlling carbon emissions from buildings are also provided.  相似文献   

7.
Within the forest sector, the sustainability concept has evolved from a narrow focus on sustainable wood production to a much broader evaluation of environmental, social, and economic sustainability for whole value chains. A new software tool - ToSIA - has been developed for assessing sustainability impacts of Forest-Wood-Chains (FWCs). In the approach, FWCs are defined as chains of production processes (e.g. harvesting-transport-industrial processing), which are linked with products (e.g. a timber frame house). Sustainability is determined by analysing environmental, economic, and social sustainability indicators for all the production processes along the FWC. The tool calculates sustainability values as products of the relative indicator values (i.e. indicator value expressed per unit of material flow) multiplied with the material flow entering the process. Calculated sustainability values are then aggregated for the segments of the FWC or for the complete chain. The sustainability impact assessment requires carefully specified system boundaries. ToSIA uses a data-oriented approach that is very flexible in the focus of the analysis and the selection of indicators of sustainability. An example of alternative Norway spruce management systems in Southern Germany and their effects on six sustainability indicators is presented. The less intensive management system with natural regeneration and motor-manual harvesting shows higher carbon storage and slightly less energy use. It creates more employment and higher labour costs, but the average rate of accidents is also higher. ToSIA offers a transparent and consistent methodological framework to assess sustainability impacts in the forest-based sector as affected, e.g. by changes in policies, market conditions, or technology. The paper discusses strengths and limitations of the approach and provides an outlook on further development perspectives of the methodology.  相似文献   

8.
Aim and Background The use of palm oil for bioenergy has become increasingly important for Europe in the last years because of its favourable proportion of yield to area under cultivation. Thus, palm oil presents a low-priced alternative to other energy sources, e.?g. rapeseed oil. Currently, however, palm oil gets a bad press due to new studies about the negative environmental consequences of cultivation practices. Due to the high demand for palm oil, land is becoming scarce. This results in the clearing of primary forests and consequently in the loss of biodiversity and in an increase of greenhouse gas emissions. To reduce the latter, not only the process of oil palm cultivation has to be optimised but also the practice of establishing new plantations by clearing natural forests has to be questioned. The aim of this article is to disclose potentials for greenhouse gas reductions in existing as well as in newly-planned oil palm plantations. Results and Discussion For existing oil palm plantations, two main fields for possible optimisation can be identified: one is improving the plantation management, the other is increasing the efficiency of the utilisation of waste products such as fibres and husks or oil mill effluents. For newly-planned oil palm plantations alternative land use scenarios have to be considered. The results show a big potential for optimisation. Thus, the greenhouse gas balance improves slightly if plantations are run more efficiently. If the waste products are used to generate energy, there are significantly positive effects on the greenhouse gas balance, especially through the reduction of methane emissions. By running a plantation in a professional best-practice way, 4.8 t of greenhouse gases can be saved annually per hectare cultivation area, expressed as CO2 equivalents. If newly-planned oil palm plantations are established on fallow land, greenhouse gas emissions can be further reduced by an additional 4.8 t of CO2 equivalents per hectare and year. From an economic perspective, this may be more costly than clearing primary forest but it is advantageous for both the greenhouse gas balance and the biodiversity of the concerned areas. All in all, exploiting the whole potential for optimisation could result in the saving of 10.2 t CO2 equivalents per hectare and year more than it is the case in the existing mode of cultivation. Conclusions and Perspectives Due to the high demand of palm oil by the world market, cultivation areas for oil palms are becoming increasingly scarce. Thus, it is vital to exploit the full potential of oil palm cultivation in an environmentally and economically sustainable way. The management of plantations has to be optimised and a generally valid waste management system must be implemented in existing and future plantations. New plantations should preferably be established on fallow land, not by the clearing of primary forests. It is essential for a sustainable palm oil production to tap the full potential for optimisation. This, however, is currently not happening due to the high start-up investments. It is thus recommended to introduce an internationally valid certification system which may provide an incentive for more sustainable and effective production methods.  相似文献   

9.
The International Biological Programme/Marine Productivity Section (IBP/PM) initiated cooperation in world-wide studies on the grey mullet; grey mulltests are of great economic importance in many places in the world, but mainly in the tropical and subtropical regions. The aim of IBP/PM is the intensification of studies and the use of lagoons and estuaries for fish production. The importance of the mullet lies also in the fact that it is a detritus feeder, a fast growing fish, and can be successfully bred under artificial conditions. To make cultivation of these fish economical and independent of natural supply (which is becoming ever more unreliable through pollution of laggons and coastal waters), the life cycle of these fish has to be completed and the problem of induced spawning solved. Such investigations are underway in several laboratories in the World. Dissemination of the knowledge acquired, accumulation of experience on this subject, and eventual use of the results as models for induced spawning and cultivation of other species of fish and invertebrates, is another aim of IBP/PM.  相似文献   

10.

Global industrialization and excessive dependence on nonrenewable energy sources have led to an increase in solid waste and climate change, calling for strategies to implement a circular economy in all sectors to reduce carbon emissions by 45% by 2030, and to achieve carbon neutrality by 2050. Here we review circular economy strategies with focus on waste management, climate change, energy, air and water quality, land use, industry, food production, life cycle assessment, and cost-effective routes. We observed that increasing the use of bio-based materials is a challenge in terms of land use and land cover. Carbon removal technologies are actually prohibitively expensive, ranging from 100 to 1200 dollars per ton of carbon dioxide. Politically, only few companies worldwide have set climate change goals. While circular economy strategies can be implemented in various sectors such as industry, waste, energy, buildings, and transportation, life cycle assessment is required to optimize new systems. Overall, we provide a theoretical foundation for a sustainable industrial, agricultural, and commercial future by constructing cost-effective routes to a circular economy.

  相似文献   

11.
This paper compares individual (split) and central systems of air-conditioning in a life cycle perspective, taking into account the environmental impacts and resource consumption during resource extraction, material production, production of the air-conditioning units, their use, disposal and recycling. Life cycle assessment (LCA) is used in conducting this comparison.

Central systems have a longer lifetime than individual systems, lower electricity consumption and maintenance requirements during the use phase, and a higher recycling potential during the disposal phase. However, to transfer cool air, central systems use a large quantity of water pipes or air ducts, the production of which contributes significantly to resource use. The LCA study reveals that, on the whole, the central systems generally use less resources than split systems and result in lower environmental impacts.

The paper suggests a need for producers of air-conditioners to consider a change from being suppliers of air-conditioning hardware to being suppliers of cool air in order to overcome the initial cost constraints of central systems and realize their environmental and economic improvement potential to the benefit of the environment, and the industry as well as customers.  相似文献   

12.
Technical product harvesting (TEPHA) is a newly developing interdisciplinary approach in which bio-based production is investigated from a technical and ecological perspective. Society‘s demand for ecologically produced and sustainably operable goods is a key driver for the substitution of conventional materials like metals or plastics through bio-based alternatives. Technical product harvesting of near net shape grown components describes the use of suitable biomass for the production of technical products through influencing the natural shape of plants during their growth period. The use of natural materials may show positive effects on the amount of non-renewable resource consumption. This also increases the product recyclability at the end of its life cycle. Furthermore, through the near net shape growth of biomass, production steps can be reduced. As a consequence such approaches may save energy and the needed resources like crude oil, coal or gas. The derived near net shape grown components are not only considered beneficial from an environmental point of view. They can also have mechanical advantages through an intrinsic topology optimization in contrast to common natural materials, which are influenced in their shape after harvesting. In order to prove these benefits a comprehensive, interdisciplinary scientific strategy is needed. Here, both mechanical investigations and life cycle assessment as a method of environmental evaluation are used.  相似文献   

13.

Goal and Scope

Which impact does the use of non-energetic abiotic resources (ores, minerals, etc.) have in life cycles of energy systems based on biogenic and fossil fuels? Is this kind of resource use less or more environmentally harmful than the utilisation of energetic abiotic resources (mineral oil, natural gas, etc.) in the same life cycles? This paper aims at answering these questions. In Part 1, a methodology is presented and applied to the life cycles of selected energy systems. Part 2 presents and discusses the results.

Methods

The applied methodology has been explained in the Part 1. For the assessment of energetic abiotic resource use, a widely recognised method is used. For the assessment of nonenergetic abiotic resource use, no overall recognised methodological approach exists. That is why for this aspect two different methods are exemplarily applied and compared with each other.

Results and Conclusion

Results show that the two assessment approaches for non-energetic resource utilisation lead to qualitatively equal results. Nevertheless they differ considerably from each other in their absolute values. This makes obvious that there is still a need for further methodological research work on that issue. Nevertheless, both methodologies yield that the accumulated effect of ore and mineral use is considerably lower than the accumulated effect of fossil primary energy utilisation in all life cycles analysed. With the assumptions made, the use of non-energetic abiotic resources only plays a comparatively subordinate role in the environmental life cycle assessment of energy systems based on biogenic and fossil fuels.

Recommendation and Perspective

Results suggest that an important resource-related impact of biomass and fossil fuel powered energy systems is caused by their consumption of fossil primary energy resources. The impact of non-energetic resource use can be neglected in comparison to that. At the same time, results also make clear that there is still a considerable need for further methodical research aiming at a standardised assessment methodology for the use of non-energetic abiotic resources.  相似文献   

14.
● State-of-the-art applications of machine learning (ML) in solid waste (SW) is presented. ● Changes of research field over time, space, and hot topics were analyzed. ● Detailed application seniors of ML on the life cycle of SW were summarized. ● Perspectives towards future development of ML in the field of SW were discussed. Due to the superiority of machine learning (ML) data processing, it is widely used in research of solid waste (SW). This study analyzed the research and developmental progress of the applications of ML in the life cycle of SW. Statistical analyses were undertaken on the literature published between 1985 and 2021 in the Science Citation Index Expanded and Social Sciences Citation Index to provide an overview of the progress. Based on the articles considered, a rapid upward trend from 1985 to 2021 was found and international cooperatives were found to have strengthened. The three topics of ML, namely, SW categories, ML algorithms, and specific applications, as applied to the life cycle of SW were discussed. ML has been applied during the entire SW process, thereby affecting its life cycle. ML was used to predict the generation and characteristics of SW, optimize its collection and transportation, and model the processing of its energy utilization. Finally, the current challenges of applying ML to SW and future perspectives were discussed. The goal is to achieve high economic and environmental benefits and carbon reduction during the life cycle of SW. ML plays an important role in the modernization and intellectualization of SW management. It is hoped that this work would be helpful to provide a constructive overview towards the state-of-the-art development of SW disposal.  相似文献   

15.
The continuous increase in world energy demand will lead to an energy crisis due to the limited availability of fossil fuels. Furthermore, the use of this energetic resource is responsible for the accumulation of greenhouse gases in atmosphere that is associated with several negative effects on environment. Therefore, it is worth to search for different energy supplies that are renewable and environmentally friendly—carbon neutral fuel. Microalgae are photosynthetic microorganisms that can achieve high oil contents. This oil is suitable for producing biodiesel; thus, microalgae are considered a promising sustainable energetic resource that can reduce the dependence on fossil fuel. Biodiesel production from microalgae includes several steps, such as cell cultivation and harvesting, oil extraction and biodiesel synthesis. Although several attempts have been made to improve biodiesel yields from microalgae, further studies are required to improve biodiesel production rates and to reduce the associated costs. This review shows the recent developments on biodiesel production from microalgae, emphasizing two process concepts: (1) indirect route, in which, after a facultative cell wall disruption method, microalgal oil is recovered in an appropriate solvent and then converted into biodiesel through transesterification and (2) direct route, in which biodiesel is produced directly from the harvested biomass. High biodiesel yields are obtained when both routes are preceded by a cell wall disruption method. In the indirect route, it is possible to apply three different types of solvents to recover microalgal oil. Although there are several concerns about the application of organic solvents, the most promising and cost-effective alternative for lipid recovery is n-hexane. Comparing direct and indirect routes, this study demonstrates that although further studies are required to optimize biodiesel production from microalgae, the available information proposes that the direct route is the most efficient.  相似文献   

16.
The environmental impact of consumption and production is diverse and wide-reaching: air, water and ground pollutants are emitted during different phases of a life cycle, natural resources are overexploited and ecosystems are degraded. Changing consumption patterns in Asia forecast major impacts from increased demand for electric and electronic goods, cars and processed and protein-rich food, as well as buildings. While some countries have adopted policy at a strategic level to promote sustainable consumption and production, most countries, in particular developing countries in the Asia-Pacific region, do not have a comprehensive policy on sustainable consumption and production but would have much to gain from building on this new approach. The aim of this paper is to elaborate on current theory and practice in the area of sustainable production and consumption focusing on sustainable urban development. The paper will: 1) analyse current policy thinking in the field of regional sustainable consumption and production; 2) identify issues for regional policy development in the same fields; and 3) propose regional public policy related to sustainable consumption and production patterns, such as improved energy efficiency and use of alternative energy.  相似文献   

17.
生草栽培对三种岭南水果种植系统的生态经济影响评价   总被引:4,自引:0,他引:4  
综合运用能值、经济与土壤生态学分析方法,以传统清耕模式为对照,定量研究了生草栽培对荔枝(Litchi chinensis Sonn)、龙眼(Dimocarpus longan Lour)和番荔枝(Annona squamosa Linn)三种岭南水果种植系统的生态经济影响。整合系统物质流、能量流和货币流,综合分析其自然资源基础、经济发展状况及可持续发展程度,并将土壤有机质的消耗纳入不可更新自然资源能值投入分析,为岭南水果业生草栽培与否提供科学依据。结果表明,生草栽培可以将荔枝和龙眼种植系统的能值可持续性从传统清耕模式的0.16和0.46分别提升到0.17和0.47;而使番荔枝种植系统的能值可持续性从传统清耕模式的0.59降至0.45。同时,生草栽培可提高荔枝和番荔枝种植系统的经济效益,而降低龙眼种植系统的经济效益。所有案例结果均表明,生草栽培可降低果园土壤有机质的消耗。  相似文献   

18.
Vézina F  Speakman JR  Williams TD 《Ecology》2006,87(10):2447-2458
Marked interindividual variation in metabolic rate suggests considerable complexity in energy management strategies, but attempts to further our understanding of the relationship between resting metabolic rate (RMR), daily energy expenditure (DEE), and reproductive effort have been hampered by the complexity of studying this system in the field. Here, we describe energy management strategies in a captive-breeding system, using Zebra Finches (Taeniopygia guttata), to demonstrate the high level of complexity and interindividual variability in energy expenditure, food intake, locomotor activity, and reproductive effort. In particular, we investigated whether the increase in RMR associated with egg production is additive, resulting in higher DEE and a need for elevated food intake, or whether this cost is compensated by reduced expenditure in nonreproductive components of the energy budget. We found high levels of intra-individual variation in energy expenditure associated with egg production in female Zebra Finches, e.g., comparing nonbreeding stage with the one-egg stage, change in RMR varied from 4.0% and 41.3%, and change in DEE varied from -33.3% to +46.4%. This variation was systematically related to aspects of locomotor activity and reproductive effort. Females with the largest increase in RMR during egg production decreased locomotor activity the most but still had increased DEE at the one-egg stage, and females with high DEE at the one-egg stage produced larger clutches. Our study suggests that females minimize increases in DEE during egg production through behavioral energy reallocation (reduced locomotor activity) but that individuals differ in their use of this strategy, which, in turn, is related to the absolute level of reproductive investment. This suggests a very complex, individually variable system of energy management to meet the demands of egg production.  相似文献   

19.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   

20.
光合细菌生物制氢反应器研究进展   总被引:1,自引:0,他引:1  
光合细菌生物制氢技术,是将太阳能利用和环境治理结合起来的可再生能源生产技术,具有良好的环境效益、社会效益和经济效益.光合细菌制氢反应器研究是将该技术引向产业化的关键步骤.本文列举了目前光合细菌制氢研究中典型的反应器型式,分析了各自的优缺点;总结了反应器高效产氢所必需保证的运行操作条件,如光照强度、温度、pH值等,指出了目前研究中存在的不足;给出了规模化光合细菌生物制氢时需要用到的反应器性能评价指标.并针对目前反应器的研究现状,提出了后续研究应当遵循的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号