首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and subsequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic and chromium concentrations in the ash leachate may increase leachate management costs.  相似文献   

2.
Construction and demolition (C&D) wood frequently contains treated wood including wood treated with chromated copper arsenate (CCA). Many recycling options for such wood require that the product be essentially free of preservative chemicals. The objectives of this study were to document the characteristics of the wood waste stream and to evaluate the effectiveness of sorting methods for identifying treated wood. Sorting methods evaluated included visual sorting and visual sorting augmented with the use of PAN indicator stain and/or hand-held X-ray fluorescence (XRF) units. Experiments were conducted on two types of construction and demolition (C&D) wood: source separated loads containing only C&D wood and wood hand-picked from commingled loads of general C&D waste. Results showed that 77% of the treated wood was CCA-treated. For uncontaminated piles (<1% treated wood) of source separated C&D wood, visual sorting was found to effectively remove the small amounts of treated wood present. For piles of source separated wood that were contaminated (approximately 50% treated wood), visual sorts were not accurate and benefited from augmented sorting using PAN indicator stain. The handheld XRF devices were found to be effective for sorting commingled C&D wood, as PAN indicator stain was not as effective due to the excessive amount of surface dirt associated with commingled wood waste. Visual sorting of source separated wood was estimated to cost between US$21 to US$96 per metric ton. These costs depended upon the amount of treated wood and whether or not augmentation with PAN indicator was necessary. Visual sorting augmented with hand-held XRF units was estimated at US$113 per metric ton. The bulk of these costs were associated with labor. Future efforts should focus on reducing labor costs by mounting automated XRF units on conveyor systems.  相似文献   

3.
The objective of this paper is to evaluate the feasibility of producing ethanol from CCA-treated wood that is highly leachable. Following the initial tests, CCA-treated wood was hydrolysed and fermented and the results showed not only that ethanol was produced during the fermentation process but that metals were taken up by the yeast. Toxicity characteristic leaching procedure tests of the hydrolysed wood leached less than 4 mg/L of As while minimal amounts of Cr and Cu remained in the hydrolysed wood which makes landfilling of hydrolysed wood acceptable and less hazardous. A slightly lower amount of ethanol from CCA-treated than untreated wood was produced (6 and 7 g/L, respectively). In general, it suggests that production of ethanol as a source of energy from a hazardous waste (CCA-treated wood) is feasible.  相似文献   

4.
Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent.  相似文献   

5.
Ethylenediaminetetracetic acid (EDTA) is one of the most common chelators used to bind the metal ions in extremely stable complexes in heavy metal contaminated soils and thus to remediate such substrates. EDTA forms water soluble complexes with many metal ions and it is used to release the various metals. In this study, EDTA extraction of copper, chromium, and arsenic from chromated copper arsenate (CCA-C) treated wood was evaluated using batch leaching experiments. CCA-treated wood samples were extracted with eight different concentrations of EDTA for 4, 8, 18, and 24 h at room temperature. Exposing CCA-treated chips and sawdust to EDTA extraction enhanced removal of CCA components compared with extraction by deionized water. Grinding CCA-treated wood chips into 40-mesh sawdust provided greater access to and removal of CCA components. Extraction with 1% EDTA solution for 24 h removed 60% copper, 13% chromium, and 25% arsenic from treated chips. EDTA extraction of treated sawdust samples resulted in 93% copper, 36% chromium, and 38% arsenic removal. CCA leaching from treated wood blocks was also evaluated according to modified AWPA E11-99 standard test method of determining the leachability of wood preservatives. Leaching of CCA components from treated wood blocks with 1% EDTA solution for 14 days caused more copper leaching compared to leaching with deionized water. Leaching with 1% EDTA for 14 days removed 53% copper from the blocks whereas 14% copper was leached from the blocks with deionized water. The results suggest that EDTA extraction removes significant quantities of copper from CCA-treated wood. Thus, EDTA could be important in the remediation of wood waste treated with the newest formulations of organometalic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

6.
Contamination of wood waste with chromated copper arsenate greatly limits recycling opportunities for the wood waste as a whole. Separation of CCA-treated wood from other wood types is one means by which such contamination can be removed. The purpose of the current study was to evaluate two detector technologies for sorting CCA-treated wood from other wood types. The detector technologies evaluated included X-ray fluorescence spectroscopy (XRF) and laser induced breakdown spectroscopy (LIBS). The XRF detector system utilized in this study was capable of rapidly detecting the presence of CCA in painted wood, wet wood, heartwood, sapwood, and at portions of the wood containing knots. Furthermore, the XRF system was capable of distinguishing between CCA-treated wood and wood treated with alternative wood treatment preservatives, but was limited by the fact that it was not designed for on-line operation so tests were conducted in a batch mode on a conveyor. The analysis time used in this study (3 s) can be decreased significantly for an XRF system designed specifically for on-line operation. The LIBS system developed for this study was found to effectively identify CCA-treated wood for pieces ranging in thickness from 1 to 8 cm. High sorting efficiencies were noted when 10 laser shots were taken on a piece of wood. Furthermore, the LIBS system was found to be effective for identifying wood that has been coated with stains and paints in addition to identifying wood that has been CCA treated. The major drawback with the LIBS system developed in this study was the limited laser pulse energy. With an increase in laser pulse energy it is anticipated that the working focal length of the LIBS system can be increased to enable the monitoring of wood samples of more variable thicknesses. Limitations associated with analysis of very rotted pieces of wood and wet wood can also be overcome by using a higher pulse energy laser. Overall, both technologies show incredible promise for sorting CCA-treated wood from other wood types. The next recommended step would be to run an improved full-scale operation at one facility to document sorting efficiencies and fine-tune the improvements proposed in the current study. Such a study could potentially open-the-door for more widespread sorting of wood waste.  相似文献   

7.
Wood treated by preservatives is commonly found in solid waste. Among the different types of preserved wood, chromated copper arsenate (CCA) treated wood recently has received much attention due to the scale of usage and its significant role in soil and water contamination. As the ash of CCA treated wood would be hazardous if the wood were to be incinerated, this is not a good alternative, and the best available disposal method is thus landfilling in the US, Canada and Australia. Leaching of the metals from preserved wood that is disposed in unlined landfills for construction debris pollutes the soil and water environments. Several factors affecting leaching of the metals from wood, including pH of the leachant, temperature, the duration of leaching and the type of leachant, were investigated. These factors affect each of the metals, chromium, copper and arsenic, differently. A comparison of these effects on each metal was performed. The results of the experiments showed that the pH of the leachants has a significant effect on the leaching process, and sulfuric acid (pH 3) is the most effective leachant compared to nitric and acetic acid (pH 3-4-5). The amounts of leached chromium, copper and arsenic by sulfuric acid (pH 3) during 15 days were, respectively, 0.2, 0.14 and 0.15 mg more than leachates by nitric acid (pH 5) on the basis of 1g of wood (initial contents of 1.03 mg, 0.42 g and 0.8 mg per g of wood). Most of the leaching occurs in the first 5 days, and the rate of leaching decreases significantly after 5 days. Increasing temperature increases the amount of leached metals, and arsenic is the least resistant metal to the leaching when the temperature increases. Increasing the temperature from 15 degrees C to 35 degrees C during 15 days increases the amount of leached chromium, copper and arsenic by acetic acid at pH 5 by about 0.1, 0.4 and 1.2mg per g of wood, respectively.  相似文献   

8.
Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood.  相似文献   

9.
A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity.  相似文献   

10.
Significant amounts of chromated copper arsenate (CCA) treated wood products, such as utility poles and residential construction wood, remain in service. There is increasing public concern about environmental contamination from CCA-treated wood when it is removed from service for reuse or recycling, placed in landfills or burned in commercial incinerators. In this paper, we investigated the effects of time, temperature and sodium hypochlorite concentration on chromium oxidation and extraction of chromated copper arsenate from CCA-treated wood (Type C) removed from service. Of the conditions evaluated, reaction of milled wood with sodium hypochlorite for one hour at room temperature followed by heating at 75 °C for two hours gave the highest extraction efficiency. An average of 95% Cr, 99% Cu and 96% As could be removed from CCA-treated, milled wood by this process. Most of the extracted chromium was oxidized to the hexavalent state and could therefore be recycled in a CCA treating solution. Sodium hypochlorite extracting solutions could be reused several times to extract CCA components from additional treated wood samples.  相似文献   

11.
Remediation processes for recovery and reuse of chromated-copper-arsenate- (CCA) treated wood are not gaining wide acceptance because they are more expensive than landfill disposal. One reason is the high cost of the nutrient medium used to culture the metal-tolerant bacterium, Bacillus licheniformis, which removes 70-100% of the copper, chromium, and arsenic from CCA-treated southern yellow pine (CCA-SYP) in a two-step process involving oxalic acid extraction and bacterial culture. To reduce this cost, the nutrient concentration in the culture medium and the ratio of wood to nutrient medium were optimized. Maximum metal removal occurred when B. licheniformis was cultured in 1.0% nutrient medium and at a wood to nutrient medium ratio of 1:10. Also, malted barley, an abundant by-product of brewing, was evaluated as an alternative nutrient medium. Tests were done to determine absorption of metals by barley, and the results indicate that the barley acted as a biosorbent, removing heavy metals from the liquid culture after their release from CCA to SYP. For comparison, tests were also performed with no nutrient medium. Following bacterial remediation, 17% copper and 15% arsenic were removed from an aqueous slurry of CCA-SYP (no medium). When oxalic acid extraction preceded the aqueous bacterial culture, 21% copper, 54% chromium, and 63% arsenic were removed. The two-step process (oxalic acid extraction and bacterial culture with nutrient medium) appears to be an effective, yet costly, way to remove metals.  相似文献   

12.
Waste wood is frequently contaminated with wood treatment preservatives including chromated copper arsenate (CCA) and alkaline copper quat (ACQ), both of which contain metals which contaminate recycled wood products. The objective of this research was to propose a design for online automated identification of As-based and Cu-based treated wood within the recovered wood waste stream utilizing an X-ray fluorescence (XRF) system, and to evaluate the detection parameters of such system. A full-scale detection unit was used for experimentation. Two main parameters (operational threshold (OT) and measurement time) were evaluated to optimize detection efficiencies. OTs of targeted metals, As and Cu, in wood were reduced to 0.02 and 0.05, respectively. The optimum minimum measurement time of 500 ms resulted in 98%, 91%, and 97% diversion of the As, Cu and Cr mass originally contained in wood, respectively. Comparisons with other detection methods show that XRF technology can potentially fulfill the need for cost-effective processing at large facilities (>30 tons per day) which require the removal of As-based preservatives from their wood waste stream.  相似文献   

13.
The results of assays carried out on plates used in the construction industry, manufactured entirely with solid wastes of a recycled paper plant, are presented and compared with the results obtained using agglomerated wood and plywood plates. Previous results had shown that wastes are composed essentially of polymers when these wastes are generated by recycled paper produced with the “waved type II” shavings. These solid wastes were placed in a mold that was heated and pressed with a hydraulic press in order to obtain the plates. The waste-produced plates were submitted to tests for humidity, swelling, water absorption, density, modulus of rupture-static bending, modulus of elasticity and direct screw withdrawal. These same assays had been carried out on two types of commercial wood plates, agglomerated wood and plywood, in order to compare the results with those obtained with the waste plate. Waste plates had similar behavior to the agglomerated wood plate, but it was possible to distinguish greater flexibility in the waste-produced plate and a significant difference in the tests for swelling and water absorption which showed the waste plate had a better performance than the agglomerated wood and plywood plates.  相似文献   

14.
Measuring the gypsum content of C&D debris fines   总被引:1,自引:0,他引:1  
Construction and demolition (C&D) debris recycling facilities often produce a screened material intended for use as alternative daily cover (ADC) at active landfills or for shaping and grading at closed landfills. This product contains soil and small pieces of wood, concrete, gypsum drywall, shingles and other components of C&D debris. Concerns have been raised over the contribution of gypsum drywall in C&D debris fines to odor problems at landfills where the product is used. To address such concerns, limitations may be placed on the percentage of gypsum (or sulfate) that can occur, and standardized testing procedures are required to permit valid compliance testing. A test procedure was developed for measuring the gypsum content in C&D debris fines. The concentration of sulfate leached in an aqueous solution was used to estimate the initial gypsum content of the sample. The impact of sample size and leaching time were evaluated. Precision and accuracy increased with increasing gypsum content. Results from replicate samples had an average relative standard deviation of 9%. The gypsum content of fines obtained from different facilities in the US varied widely from 1% to over 25%. These variations not only occurred between differing facilities, but within batches produced within a single facility.  相似文献   

15.
In this study, three possible improvements to a remediation process for chromated-copper-arsenate- (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for multiple extractions, (2) varying the ratio of oxalic acid to wood, and (3) using a noncommercial source of oxalic acid such as Aspergillus niger, which produces oxalic acid as a metabolic byproduct. Reusing oxalic acid for multiple extractions removed significant amounts of copper, chromium, and arsenic. Increasing the ratio of wood to acid caused a steady decline in metal removal. Aspergillus niger removed moderate amounts of copper, chromium, and arsenic from CCA-treated wood. Although A. niger was effective, culture medium costs are likely to offset any benefits. Repeated extraction with commercial oxalic acid appears to be the most cost-effective method tested for the two-step process.  相似文献   

16.
Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.  相似文献   

17.
Hydrogen sulfide (H2S) has been identified as a principal odorous component of gaseous emissions from construction and demolition debris (C&D) landfills. Although several studies have reported the ambient concentrations of H2S near C&D landfills, few studies have quantified emission rates of H2S. One of the most widely used techniques for measuring surface gas emission rates from landfills is the flux chamber method. Flux measurements using the flux chamber were performed at five different C&D landfills from April to August, 2003. The flux rates of H2S measured in this research were between 0.192 and 1.76 mg/(m2-d).  相似文献   

18.
The fates of radioactive cadmium, strontium, cesium, cobalt, arsenic, mercury, zinc, and copper spiked into sewage sludge were determined when the sludge was gasified by a process that maximizes production of char from the sludge (ChemChar process). For the most part the metals were retained in the char product in the gasifier. Small, but measurable quantities of arsenic were mobilized by gasification and slightly more than 1% of the arsenic was detected in the effluent gas. Mercury was largely mobilized from the solids in the gasifier, but most of the mercury was retained in a filter composed of char prepared from the sludge. The small amounts of mercury leaving the gasification system were found to be associated with an aerosol product generated during gasification. The metals retained in the char product of gasification were only partially leachable with 50% concentrated nitric acid.  相似文献   

19.
Methodology for the accounting, generation, and composition of building-related construction and demolition (C&D) at a regional level was explored. Six specific categories of debris were examined: residential construction, nonresidential construction, residential demolition, nonresidential demolition, residential renovation, and nonresidential renovation. Debris produced from each activity was calculated as the product of the total area of activity and waste generated per unit area of activity. Similarly, composition was estimated as the product of the total area of activity and the amount of each waste component generated per unit area. The area of activity was calculated using statistical data, and individual site studies were used to assess the average amount of waste generated per unit area. The application of the methodology was illustrated using Florida, US approximately 3,750,000 metric tons of building-related C&D debris were estimated as generated in Florida in 2000. Of that amount, concrete represented 56%, wood 13%, drywall 11%, miscellaneous debris 8%, asphalt roofing materials 7%, metal 3%, cardboard 1%, and plastic 1%. This model differs from others because it accommodates regional construction styles and available data. The resulting generation amount per capita is less than the US estimate - attributable to the high construction, low demolition activity seen in Florida.  相似文献   

20.
One methodology is proposed to estimate the quantification and composition of building-related construction and demolition (C&D) waste in a fast developing region like Shanghai, PR China. The varieties of structure types and building waste intensities due to the requirement of progressive building design and structure codes in different decades are considered in this regional C&D waste estimation study. It is concluded that approximately 13.71 million tons of C&D waste was generated in 2012 in Shanghai, of which more than 80% of this C&D waste was concrete, bricks and blocks. Analysis from this study can be applied to facilitate C&D waste governors and researchers the duty of formulating precise policies and specifications. As a matter of fact, at least a half of the enormous amount of C&D waste could be recycled if implementing proper recycling technologies and measures. The appropriate managements would be economically and environmentally beneficial to Shanghai where the per capita per year output of C&D waste has been as high as 842 kg in 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号