首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Evaporative loss of particulate matter (with aerodynamic diameter <2.5 μm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from <10% during cold months to >80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8–16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32–44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

2.
Ambient air monitoring for organic acids in PM2.5 was conducted at several locations in California. During the study, it was found that oxalic acid (ethanedioc acid) was the most abundant organic acid found in the PM2.5 fraction. Samples from Azuza (in southern California), San Jose (in the San Francisco Bay area), and Fresno (in central California), a PM2.5 Super Site, were collected in 1999 and analyzed. The results for oxalic acid concentrations during this monitoring effort are presented.  相似文献   

3.
ABSTRACT

Ambient air monitoring for organic acids in PM25 was conducted at several locations in California. During the study, it was found that oxalic acid (ethanedioc acid) was the most abundant organic acid found in the PM2 5 fraction. Samples from Azuza (in southern California), San Jose (in the San Francisco Bay area), and Fresno (in central California), a PM2.5 Super Site, were collected in 1999 and analyzed. The results for oxalic acid concentrations during this monitoring effort are presented.  相似文献   

4.
针对目前家居环境净化PM2.5的要求,在现有空气过滤材料的基础上,探讨一种适合于家居环境移动式空气净化装置用低阻、高效和长寿命的过滤材料。采用实验研究的方法对常用玻纤滤纸以及驻极体空气过滤材料进行了过滤特性、电镜、孔径测试的对比实验研究。结果表明,当过滤风速为5 cm/s时,3种驻极体滤料对粒径≤4.5 μm的颗粒物的分级过滤效率要高于玻纤滤纸且都在90%以上,其过滤阻力在4.9~6.4 Pa之间,而高效滤纸的过滤阻力在57.8~78.6 Pa之间;在实验风速条件下,驻极体滤料对PM2.5的过滤效率和过滤阻力分别高于和低于高效玻纤滤纸;对驻极体滤料进行蒸馏水洗涤后,其对颗粒物的过滤效率下降,驻极体滤料静电效应具有不稳定特性;电镜测试发现,玻纤滤纸纤维层排布致密,纤维存在断裂现象,而驻极体滤料较为蓬松,无纤维断裂现象;孔径实验表明,驻极体滤料的平均孔径为玻纤滤纸的11.9~14.7倍,驻极体滤料具有良好的透气和容尘特性。  相似文献   

5.
ABSTRACT

The chemical mass balance (CMB) model was applied to winter (November through January) 1991–1996 PM2.5 and PM10 data from the Sacramento 13th and T Streets site in order to identify the contributions from major source categories to peak 24-hr ambient PM2.5 and PM10 levels. The average monthly PM10 monitoring data for the nine-year period in Sacramento County indicate that elevated concentrations are typical in the winter months. Concentrations on days of highest PM10 are dominated by the PM2.5 fraction. One factor contributing to increased PM2.5 concentrations in the winter is meteorology (cool temperatures, low wind speeds, low inversion layers, and more humid conditions) that favors the formation of secondary nitrate and sulfate aerosols. Residential wood burning also elevates fine particulate concentrations in the Sacramento area.

The results of the CMB analysis highlight three key points. First, the source apportionment results indicate that primary motor vehicle exhaust and wood smoke are significant sources of both PM2.5 and PM10 in winter. Second, nitrates, secondarily formed as a result of motor-vehicle and other sources of nitrogen oxide (NOx), are another principal cause of the high PM2.5 and PM10 levels during the winter months. Third, fugitive dust, whether it is resuspended soil and dust or agricultural tillage, is not the major contributor to peak winter PM2.5 and PM10 levels in the Sacramento area.  相似文献   

6.
It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10-2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children's Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

7.
针对办公环境PM2.5的净化问题,现场测试了以3种不同过滤面积的驻极体空气过滤器为核心过滤元件的空气净化器的过滤性能,并与普通高效微粒空气过滤器(high-efficiency particulate air,HEPA)、初效碳纤维滤层和活性炭滤网等进行了对比.测试点为上海某三楼办公室座位区离地面1.1 m处人体坐姿呼吸平面.采用蜡烛烟雾作为室内微细颗粒污染物的来源.分别测试了40 min内PM2.5的质量浓度衰减值和相应运行功率,并计算了净化器处理风量和洁净空气量.结果表明,过滤面积在0.20~0.54 m2范围内驻极体过滤器的过滤效率随面积增加而提高;过滤面积为0.29 m2的驻极体处理风量最大;以洁净空气量与功率的比值作为指标,可以直观判断出净化效果最好的是初效滤网叠加过滤面积为0.54 m2的驻极体过滤器;该工况下40 min内PM2.5浓度衰减率与HEPA几乎相同且均接近70%,但是洁净空气量大于HEPA.  相似文献   

8.
吴夏雯  陆茵 《环境工程学报》2016,10(4):1933-1938
测定了不同孔径结构的无纺布和聚偏氟乙烯(PVDF)微滤膜电晕前后对Particulate Matter 2.5(PM2.5)的过滤性能,研究了材料的孔径与结构、过滤气流量、电晕放电对PM2.5过滤效率的影响。结果表明,聚酯无纺布和PVDF微滤膜对PM2.5的过滤性能差别较大,电晕放电处理技术能有效提高过滤介质对PM2.5的过滤效率。过滤介质有效过滤面积为10.2 cm2、过滤气流量为4 L/min时,克重数为50 g/m2的聚酯无纺布电晕处理后对PM2.5的过滤效率为77%,过滤压降为2.3 kPa;而孔径分布为0.7~1.0 μm的PVDF微滤膜电晕处理后对PM2.5的过滤效率达到99.79%,过滤压降为2.2 kPa,具备了高效低阻的性能。  相似文献   

9.
Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 microg/m3 and from 5 to 18 microg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 microg/m3, with observed 24-hr peaks reaching levels as high as 160 microg/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4(2-)) and nitrate (NO3-) components of PM2.5 and PM10) and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10-2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

10.
Gases and particulate matter predictions from the UCD/CIT air quality model were used in a visibility model to predict source contributions to visual impairment in the San Joaquin Valley (SJV), the southern portion of California's Central Valley, during December 2000 and January 2001. Within the SJV, daytime (0800–1700 PST) light extinction was dominated by scattering associated with airborne particles. Measured daytime particle scattering coefficients were compared to predicted values at approximately 40 locations across the SJV after correction for the increased temperature and decreased relative humidity produced by “smart heaters” placed upstream of nephelometers. Mean fractional bias and mean fractional error were ?0.22 and 0.65, respectively, indicating reasonable agreement between model predictions and measurements. Particulate water, nitrate, organic matter, and ammonium were the major particulate species contributing to light scattering in the SJV. Daytime light extinction in the SJV averaged between December 25, 2000 and January 7, 2001 was mainly associated with animal ammonia sources (28%), diesel engines (18%), catalyst gasoline engines (9%), other anthropogenic sources (9%), and wood smoke (7%) with initial and boundary conditions accounting for 13%. The source apportionment results from this study apply to wintertime conditions when airborne particulate matter concentrations are typically at their annual maximum. Further study would be required to quantify source contributions to light extinction in other seasons.  相似文献   

11.
The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event.

Implications: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.  相似文献   


12.
Seasonal elemental carbon (EC) and organic carbon (OC) concentration levels in PM2.5 samples collected in Milan (Italy) are presented and discussed, enriching the world-wide database of carbonaceous species in fine particulate matter (PM). High-volume PM2.5 sampling campaigns were performed from August 2002 through December 2003 in downtown Milan at an urban background site. Compared to worldwide average concentrations, in Milan warm-season OC and both warm- and cold-season EC are relatively low; conversely, cold-season OC concentrations are rather high. Consequently, high values for the OC/EC ratio are observed, especially in the winter period. The relation between OC/EC ratio values and wind direction is investigated, pointing out that the highest ratios are associated to winds blowing from those nearby areas where wood consumption for domestic heating is larger. Information on the OC partitioning between its primary and secondary fraction are derived by means of the EC-tracer method and principal component analysis. In the warm-season, OC is mainly of secondary origin, secondary organic aerosol (SOA) accounting for about 84% of the particulate organic matter and 25–28% of the PM2.5 mass. For the cold season the full application of the EC-tracer method was not possible and the primary organic aerosol deriving from traffic could only be estimated. However, principal component analysis (PCA) suggest a prevailing primary origin for OC, thus raising the attention on space heating emissions, and on wood combustion in particular, for air quality control. The role of traffic emissions on PM2.5 concentration levels, as a primary source, are also assessed: EC and primary organic matter from traffic account for a warm-season 30% and a cold-season 7% of the total carbon in PM2.5, that is for about 10% and 6% of PM2.5 mass, respectively. This latter small primary contribution estimated for the cold-season points out that stationary sources, which were not thought to play a significant role on PM concentration levels, may conversely be as much responsible for ambient particulate pollution.  相似文献   

13.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

14.
烧结机细颗粒物PM2.5排放特性   总被引:1,自引:0,他引:1  
利用基于荷电低压颗粒物撞击器(ELPI)的颗粒物排放稀释采样系统,对不同烧结机组的机头、机尾、配料和整粒后的烟粉尘进行了PM2.5的现场测试。结果表明了各测试点位排放的PM2.5粒径分布和质量浓度分布特点。烧结机机头脱硫后虽然降低PM2.5的质量浓度,却增大了其粒数浓度,因此应对脱硫工艺进行优化。PM2.5单体颗粒形态有:球形颗粒、超细颗粒、不规则颗粒和烟尘集合体。PM2.5中SO42-、有机碳(OC)、无机碳(EC)和铁(Fe)的含量较高,分别为2.65%~10.76%,6.15%~12.6%,3.05%~10.05%和4.14%~26.78%。  相似文献   

15.
关于PM2.5的综述   总被引:3,自引:0,他引:3  
综述了大气PM25的来源,样品采集分析,化学组成,病毒机理,对人类健康和大气能见度的影响,以及国内外的研究进展.  相似文献   

16.
The UCD/CIT air quality model with the Caltech Atmospheric Chemistry Mechanism (CACM) was used to predict source contributions to secondary organic aerosol (SOA) formation in the San Joaquin Valley (SJV) from December 15, 2000 to January 7, 2001. The predicted 24-day average SOA concentration had a maximum value of 4.26 μg m?3 50 km southwest of Fresno. Predicted SOA concentrations at Fresno, Angiola, and Bakersfield were 2.46 μg m?3, 1.68 μg m?3, and 2.28 μg m?3, respectively, accounting for 6%, 37%, and 4% of the total predicted organic aerosol. The average SOA concentration across the entire SJV was 1.35 μg m?3, which accounts for approximately 20% of the total predicted organic aerosol. Averaged over the entire SJV, the major SOA sources were solvent use (28% of SOA), catalyst gasoline engines (25% of SOA), wood smoke (16% of SOA), non-catalyst gasoline engines (13% of SOA), and other anthropogenic sources (11% of SOA). Diesel engines were predicted to only account for approximately 2% of the total SOA formation in the SJV because they emit a small amount of volatile organic compounds relative to other sources. In terms of SOA precursors within the SJV, long-chain alkanes were predicted to be the largest SOA contributor, followed by aromatic compounds. The current study identifies the major known contributors to the SOA burden during a winter pollution episode in the SJV, with further enhancements possible as additional formation pathways are discovered.  相似文献   

17.
In December 1994, the South Coast Air Quality Management District (SCAQMD) initiated a comprehensive program, the PM10 Technical Enhancement Program (PTEP), to characterize fine PM in the South Coast Air Basin (SCAB). A 1-year special particulate monitoring project was conducted from January 1995 to February 1996 as part of the PTEP. Under this enhanced monitoring, HNO3, NH3, and speciated PM10 and PM2.5 concentrations were measured at five stations (Anaheim, downtown Los Angeles, Diamond Bar, Fontana, and Rubidoux) in the SCAB and at one background station at San Nicolas Island. PM2.5 and PM10 mass and 43 individual species were analyzed for a full chemical speciation of the particle data. The PTEP data indicate that the most abundant chemical components of PM10 and PM2.5 in the SCAB are NH4+ (8-9% of PM10 and 14-17% of PM2.5), NO3- (23-26% of PM10 and 28-41% of PM2.5), SO4- (6-11% of PM10 and 9-18% of PM2.5), organic carbon (OC) (15-19% of PM10 and 18-26% of PM2.5), and elemental carbon (EC) (5-8% of PM10 and 8-13% of PM2.5). On an annual average basis, PM2.5 comprises 52-59% of the SCAB PM10. Annual average PM10 and PM2.5 concentrations showed strong spatial variations, low at coastal sites and high at inland sites. Annual average PM10 concentrations varied from 40.8 micrograms/m3 at Anaheim to 76.8 micrograms/m3 at Rubidoux, while annual average PM2.5 concentrations varied from 21.7 micrograms/m3 at Anaheim to 39.8 micrograms/m3 at Rubidoux. The chemical characterizations of the PM2.5 and PM10 concentrations, as well as their spatial variations, were examined; the important findings are summarized in this paper, and the temporal variations are discussed in the companion paper.  相似文献   

18.
ABSTRACT

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California’s San Joaquin Valley (SJV). Fine particulate matter (PM2.5), coarse particulate matter (PM10), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995–1996.

Day-to-day variations of PM2.5 and PM10 and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites. Under non-rainy conditions, similar diurnal variations of PM2.5 and coarse aerosol were found at the two urban sites, with concentrations peaking during the nighttime hours. Conversely, PM2.5 and coarse aerosol peaked during the morning and afternoon hours at the two non-urban sites. Under rainy and foggy conditions, these diurnal patterns were absent or greatly suppressed.

In the urban areas, elevated concentrations of primary pollutants (e.g., organic and elemental carbons) during the late afternoon and nighttime hours reflected the impact from residential wood combustion and motor vehicle exhaust. During the daytime, these concentrations decreased as the mixed layer deepened. Increases of secondary nitrate and sulfate concentrations were found during the daylight hours as a result of photochemical reactions. At the non-urban sites, the same increases in secondary aerosol concentrations occurred during the daylight hours but with a discernable lag time. Concentrations of the primary pollutants also increased at the non-urban sites during the daytime. These observations are attributed to mixing aloft of primary aerosols and secondary precursor gases in urban areas followed by rapid transport aloft to non-urban areas coupled with photochemical conversion.  相似文献   

19.
The South Coast Air Quality Management District (SCAQMD) conducted a 1-year special particulate monitoring study from January 1995 to February 1996. This monitoring data indicates that high PM10 and PM2.5 concentrations were observed in the fall (October, November, and December), with November concentrations being the highest. During the rest of the year, PM2.5 and PM10 masses gradually increased from January to September. Monthly PM10 mass varied from 20 to 120 micrograms/m3, and monthly PM2.5 mass varied from 13 to 63 micrograms/m3. The PM2.5-to-PM10 ratio varied daily and ranged between 22 and 96%. Two types of high-PM days were observed. The first type was observed under fall stagnation conditions, which lead to high secondary species concentrations. The second type was observed under high wind conditions, which lead to high primary coarse particles of crustal components. The highest 24-hr average PM10 concentration (226.3 micrograms/m3) was observed at the Fontana station, while the highest PM2.5 concentration (129.3 micrograms/m3) was observed at the Diamond Bar station.  相似文献   

20.
针对常用涤纶滤料,分别采用不同道数的缝纫线缝合和在缝纫接口处的针孔上涂胶等不同的缝合工艺,实验测试并对比了涤纶滤料在不同的缝合工艺下的静态过滤效率,并讨论了滤袋缝合工艺对PM2.5过滤效率的影响。结果表明,清洁滤料在环境气溶胶中,缝纫线缝制道数越多,过滤效率就越低,每增加一道缝纫线过滤效率就降低1%~6%左右;采用胶合工艺将滤袋缝合处的针孔涂胶覆盖,对于粒径大于1 μm以上的颗粒物的过滤效率有明显提高,最大提高值达7%;温度对胶合后的缝纫接口影响较小,过滤风速对过滤效率和过滤阻力影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号