首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Mora  A. Ospína 《Marine Biology》2001,139(4):765-769
Knowledge of upper thermal-tolerance limits of marine organisms in the tropical eastern Pacific (TEP) is important because of the influence of phenomena such as El Niño and global warming, which increase sea temperature. Laboratory experiments were conducted to determine the critical thermal maximum (CTM) of reef fishes from the TEP. In 15 reef fishes of Gorgona Island (TEP) the CTM was between 34.7°C and 40.8°C. None of these CTMs was exceeded by sea temperature in the TEP during any of the strongest El Niño events in this century (32°C during El Niño 1982-1983 and 1997-1998), which indicates that all species studied here may tolerate El Niño maximum temperatures. In addition, the CTM of the least-tolerant species was 8°C above the current mean sea temperature in a wide range of latitudes in the TEP. This suggests that fishes live far from their upper thermal tolerance limits and that the current global-warming trend is still unlikely to be dangerous for these species. If sea temperature continues to increase at the current rate, in about a century sea temperature could exceed the thermal tolerance of some reef fishes and threaten them with extinction. Such risk, however, might occur sooner if the sea temperature during El Niño also increased in step with the global warming, but also because other processes involved in maintaining population, such as reproduction, can be affected at lower temperatures. The possible ability of reef fishes to adapt to increases in sea temperature is discussed.  相似文献   

2.
Nepstad DC  Tohver IM  Ray D  Moutinho P  Cardinot G 《Ecology》2007,88(9):2259-2269
Severe drought episodes such as those associated with El Ni?o Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.  相似文献   

3.
Abstract:  Marine protected areas (MPAs) that allow some degree of artisanal fishing have been proposed to control the overexploitation of marine resources while allowing extraction by local communities. Nevertheless, the management of MPAs is often impaired by the absence of data on the status of their resources. We devised a method to estimate population growth rates with the type of data that are usually available for reef fishes. We used 7 years of spatially explicit abundance data on the leopard grouper ( Mycteroperca rosacea ) in an MPA in the Gulf of California, Mexico, to construct a matrix population model that incorporated the effects of El Niño/La Niña Southern Oscillation on population dynamics. An environmental model that estimated different demographic estimates for El Niño and La Niña periods performed better than a single-environment model, and a single-habitat model performed better than a model that considered different depths as different habitats. Our results suggest that the population of the leopard grouper off the main island of the MPA is not viable under present conditions. Although the impact of fishing on leopard grouper populations in the MPA has not yet been established, fishing should be closed as a precautionary measure at this island if a priority of the MPA is to ensure the sustainability of its fish populations.  相似文献   

4.
Abstract: In 1998, tropical sea surface temperatures were the highest on record, topping off a 50-year trend for some tropical oceans. In the same year, coral reefs around the world suffered the most extensive and severe bleaching ( loss of symbiotic algae) and subsequent mortality on record. These events may not be attributable to local stressors or natural variability alone but were likely induced by an underlying global phenomenon. It is probable that anthropogenic global warming has contributed to the extensive coral bleaching that has occurred simultaneously throughout the reef regions of the world. The geographic extent, increasing frequency, and regional severity of mass bleaching events are an apparent result of a steadily rising baseline of marine temperatures, combined with regionally specific El Niño and La Niña events. The repercussions of the 1998 mass bleaching and mortality events will be far-reaching. Human populations dependent on reef services face losses of marine biodiversity, fisheries, and shoreline protection. Coral bleaching events may become more frequent and severe as the climate continues to warm, exposing coral reefs to an increasingly hostile environment. This global threat to corals compounds the effects of more localized anthropogenic factors that already place reefs at risk. Significant attention needs to be given to the monitoring of coral reef ecosystems, research on the projected and realized effects of global climate change, and measures to curtail greenhouse gas emissions. Even those reefs with well-enforced legal protection as marine sanctuaries, or those managed for sustainable use, are threatened by global climate change.  相似文献   

5.
The population structure of the California market squid Loligo opalescens was studied for the Channel Islands region off Southern California between June 1998 and March 2000. During this time Californian waters were exposed to an extraordinary El Niño event that was possibly the most dramatic change in oceanographic conditions that occurred last century. There was then a rapid transition to record cool La Niña conditions. Statolith increments were used to determine age parameters and increment periodicity was validated for the first 54 days of life. Based on statolith increment counts, the oldest males and females were 257 and 225 days respectively and individuals matured as young as 129 and 137 days respectively. No distinct hatching period was detected. There was a general trend of increasing body size throughout the study period. Squid that hatched and grew through the El Niño were strikingly smaller and had slower growth rates compared to squid that grew through the La Niña. This was related to oceanography and associated productivity. There was a positive correlation between squid mantle length and upwelling index and a negative correlation between mantle length and sea temperature. The 'live-fast die-young' life history strategy of squid makes them ideal candidates for following the effects of the dramatic changes in oceanographic conditions off California. We propose that squid can serve as ecosystem recorders and productivity integrators over time and space and are useful organisms to tie oceanography to biology.  相似文献   

6.
Abstract:  Global climate change (GCC) can have profound effects on species whose ecology is governed primarily by climatic factors. The ecology of small mammals inhabiting semiarid Chile is strongly affected by the El Niño Southern Oscillation (ENSO). During La Niña events in this area, dry conditions prevail and species may disappear from the thorn-scrub habitat. Conversely, El Niño events bring high rainfall, and associated pulses of food trigger small-mammal population increases. We used capture–mark–recapture to study responses of the degu ( Octodon degus ), a dominant small mammal, to variation in rainfall over 18 years. In response to a recent trend toward wetter conditions, degus reached record-high densities and maintained more stable numbers in the area. Underlying mechanisms involved variation in adult survival, juvenile persistence, and fecundity linked to rainfall changes during consecutive years (i.e., rainfall phases). During prolonged droughts, degus had low survival and produced fewer offspring, with low persistence. Following high rainfall, these parameters reversed; consecutive wet years resulted in further increases. Weak declines in fecundity and adult survival and high persistence of juveniles explained delayed responses to deteriorating conditions in initial dry years. If GCC leads to increased frequency of El Niño events, we anticipate greater numerical dominance of degus in semiarid Chile and possible range expansion. Furthermore, degus have strong impacts on other small mammal and some plant species, are important prey species, and are agricultural pests and disease reservoirs. Hence, GCC has the potential to dramatically influence their ecology in northern Chile and to have cascading effects on other components of this system.  相似文献   

7.
Summary Observed changes in maternal investment due to an environmentally induced decrease in food supply (the 1983 El Ni?o-Southern Oscillation) are compared witha priori predictions for the California sea lion (Zalophus californianus). Changes in behavior, growth and mortality of off-spring were also examined. Data collected in the first two months postpartum for the years before (PRE), during (EN), and the two years after (POST1 and POST2) the 1983 El Ni?o indicate that females initiated postpartum feeding trips earlier during the food shortage, and spent more time away on individual feeding trips in both the El Ni?o year and the year after. Perinatal sex ratios (♀:♂) in the years PRE, EN, POST1 and POST2 were 1:1, 1.4:1, 1.1:1 and 1:1.4, respectively. Fewer copulations were observed during the El Ni?o year, but this difference was not statistically significant. Pups spent less time suckling in the food shortage year and the year following, but attempted to sneak suckle more. Pups were less active and played on land less in the El Ni?o and following year. Finally, maternal investment as measured by milk intake of offspring was decreased, pups grew more slowly, and suffered increased mortality during the food shortage year. Despite expected sex differences in maternal investment and pup behavior in response to food shortage, there were no sex-biased differences in response in either females or pups. As expected, the food shortage did not affect adult males since they migrate north during the non-breeding season where the environmental perturbation was less severe.  相似文献   

8.
Abstract:  Deforestation in Indonesia poses a significant threat to the region's biodiversity. We mapped forest cover in Kalimantan, Indonesia, in 2002, with imagery provided by the Moderate Resolution Imaging Spectrometer (MODIS). The MODIS-based forest and nonforest map showed good agreement with other sources of recent data on forest cover. Comparison of MODIS forest cover with Indonesian government data from 1996 revealed that almost 3 million ha of forest were lost in Kalimantan since the major El Niño event of 1997–1998, when a drought produced unprecedented biomass burning in the region. Over two-thirds of the deforestation occurred in proposed and existing protected areas, especially those of 100,000–250,000 ha. The loss of forest in proposed and existing protected areas suggests that Kalimantan's protected-area network is no longer viable and that alternative conservation strategies, such as timber certification and improved monitoring and enforcement, are needed to preserve remaining forest habitats there.  相似文献   

9.
The Australasian gannet (Morus serrator) population has increased considerably over the past century, both in New Zealand and Australia. Since 1980, the population in Australian waters has increased threefold, from 6,600 breeding pairs to approximately 20,000 pairs in 1999-2000, a rate of 6% per year. Reasons for the increase in the Australasian gannet population are poorly understood; here we consider the possible effects of recent fluctuations in climatic and oceanographic conditions, and changes in major local commercial fisheries. A significant trend towards more frequent, and stronger, El Niño Southern Oscillation events, warmer summer sea surface temperatures in Bass Strait, increased annual catches and catch per unit effort in the Victorian pilchard (Sardinops sagax) fishery and potential increased discarding of fisheries bycatch may account for at least some of the observed increase in the Australasian gannet population. The potential interactive effects of these factors on prey distribution and abundance and consequently on gannet numbers are discussed.  相似文献   

10.
Sperry JH  Weatherhead PJ 《Ecology》2008,89(10):2770-2776
Drought can have severe ecological effects and global climate-change theory predicts that droughts are likely to increase in frequency and severity. Therefore, it is important that we broaden our understanding of how drought affects not only individual species, but also multitrophic interactions. Here we document vegetation and small-mammal abundance and associated patterns of Texas ratsnake (Elaphe obsoleta) body condition and survival before, during, and after a drought in central Texas, USA. Vegetation (grass and forbs) height and small-mammal capture rates were two times greater in wet years compared to the drought year. The decline of small mammals (the snakes' principal prey) during the drought was associated with a drop in ratsnake body condition, consistent with reduced food intake. During the drought, snake mortality also increased 24%. Although higher snake mortality was attributable to predation and road mortality rather than being a direct result of starvation, an increase in risk-prone behavior by foraging snakes probably increased their exposure to those other mortality factors. Drought conditions lasted only for 21 months, and vegetation, small-mammal abundance, and snake condition had returned to pre-drought levels within a year. Although estimates of snake population size were not available, it is likely that substantially more than a year was required for the population to return to its previous size.  相似文献   

11.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

12.
Studies of the impact of El Niño periods on marine species have usually focused on negative, highly visible effects, e.g., decreasing growth rates or increasing mortality due to a decline in primary productivity in typically nutrient rich upwelling zones; but positive effects related to elevated water temperature are also known. This study examined how the growth rate of juvenile white seabass, Atractoscion nobilis, responded to changes in ocean temperature in an El Niño period (1997–1998) in the northern portion of the Southern California Bight, USA. Growth rates of juvenile white seabass during their first 4 years of life were estimated as the slopes of linear relationships between body mass and age (from otoliths) of 800 fish collected at 11 stations throughout the bight. Growth rates differed significantly among cohorts hatched in 1996–2001. Specifically, white seabass that hatched in 1996 and 1997 grew significantly faster than those that hatched in 1998, 1999, and 2001. These differences in growth rates of cohorts appeared to be driven by variation in sea-surface temperature (SST). Growth rates averaged over the first three or 4 years of life were significantly positively correlated to average daily SST during the first 1–4 years of life. Increased growth of juvenile white seabass during the warm El Niño period likely provided a number of benefits to this warm-temperate species. This study demonstrated that some species will benefit from these warm-water periods despite reduced system-wide primary production.  相似文献   

13.
Large numbers of paralarvae of the California market squid, Loligo opalescens (10,560 paralarvae from 422 plankton samples), were collected in the Southern California Bight in 1999, 2000, and 2001 during the spawning season. Paralarval abundance increased dramatically (P<0.0041) from 1.5 squid/1,000m3 in 1999 to 77.9 squid/1,000m3 in 2000, and 73.6 squid/1,000m3 in 2001, following the El Niño of 1997-1998. The effects on the squid fishery of the 1997-1998 El Niño were thus extended for two years, with larval abundance reduced until the 1999-2000 spawning season. Paralarvae were abundant close to shore for up to a month after hatching in 2000 (P<0.003), with tidal surface currents adjacent to shore in the Channel Islands strongly affecting paralarval abundance. Tidally reversing currents within 1-3 km of shore created a boundary layer of "sticky water" within which paralarvae remained entrained inshore immediately after hatching. Neritic currents farther from shore dispersed older paralarvae within the Southern California Bight. The greatest change in paralarval abundance, for all transects, was observed within 1 km of the transition between these two flow regimes. Age of paralarvae (from statolith increments) entrained within the Catalina Island boundary layer averaged 13-16 days, but some individuals remained nearshore for up to a month. Paralarvae in the boundary layer occurred above 80 m depth both day and night, and exhibited a statistically significant pattern of vertical diel migration (P<0.01). Paralarvae at sea were disproportionately abundant adjacent to fronts associated with uplifted isotherms.  相似文献   

14.
C. Mora  A. Ospina 《Marine Biology》2002,141(4):789-793
The eastern tropical Pacific (ETP) reefs are affected at irregular times by extremely cold temperatures that occur principally during La Niña events. The effects of these low temperatures on the survival of reef fishes were experimentally assessed by determining the critical thermal minimum (CTM) of 15 reef fish species from Gorgona Island (ETP), and comparing these CTMs with the records of temperature during past La Niña events. Among species, mean CTMs ranged from 10.8°C to 16.3°C, which were lower than the coldest temperature recorded during the last La Niña event (18°C during La Niña 1998-1999). However, the observed ranges of CTM for two species (Thalassoma lucassanum and Eucinostomus gracilis) extended above 18°C. These results suggest that most of the reef fishes we studied are physiologically tolerant to the cold temperatures encountered during La Niña, though decreases in at least two populations may be expected as a result of the mortality of less tolerant individuals. Although tolerant to cold temperatures, reef fish populations may still experience negative changes during La Niña, because other determinants in population maintenance (e.g. reproduction and recruitment) are more temperature sensitive. The effects of other cold phenomena on reef fish survival are also discussed herein.  相似文献   

15.
The effects of El Niño (EN) and La Niña (LN) events upon marine organisms inhabiting the Eastern Pacific coast have been widely studied in recent years, concentrating primarily on changes in species composition and on population size. In this study, using somatic growth rates as metabolic response variables, we evaluated the mortality rates of coastal fishes inhabiting a central Chilean upwelling marine ecosystem in the South Pacific between 1990 and 2003. Four coastal fish species belonging to different trophic levels (one herbivore, one omnivore, and two carnivores) were analyzed. In all species, the estimated cohort somatic growth rates were low for those recruited during EN and high for those recruited during LN events. Annual cohort mortality rates were highest during EN events and lower during LN and transitional years. We propose that productivity (as a bottom-up driver) acts as a primary exogenous factor upon annual cohort mortality rates. We also propose that a plausible mechanism underlying this process is the negative effect the low somatic growth rates may have on fish ecological attributes such as their competitive abilities, condition factors, and predation risks, which ultimately may affect their fitness.  相似文献   

16.
Episodic death across species of desert shrubs   总被引:2,自引:0,他引:2  
Extreme events shape population and community trajectories. We report episodic mortality across common species of thousands of long-lived perennials individually tagged and monitored for 20 years in the Colorado Desert of California following severe regional drought. Demographic records from 1984 to 2004 show 15 years of virtual stasis in populations of adult shrubs and cacti, punctuated by a 55-100% die-off of six of the seven most common perennial species. In this episode, adults that experienced reduced growth in a lesser drought during 1984-1989 failed to survive the drought of 2002. The significance of this event is potentially profound because population dynamics of long-lived plants can be far more strongly affected by deaths of adults, which in deserts potentially live for centuries, than by seedling births or deaths. Differential mortality and rates of recovery during and after extreme climatic events quite likely determine the species composition of plant and associated animal communities for at least decades. The die-off recorded in this closely monitored community provides a unique window into the mechanics of this process of species decline and replacement.  相似文献   

17.
The relative growth rates of juvenile Macrocystis pyrifera in southern California kelp forests were substantially reduced during the El Niño of 1982–1984. The lower growth rates were correlated with increased temperature and decreased nitrogen availability. Fertilization of juvenile plants with slow-release nitrogen-phosphorus fertilizer increased their growth rates to levels previously observed when temperatures were low and nutrient levels were high. The limitation in growth of M. pyrifera by levels of available nutrients during El Niño was in contrast to the usual limitation of growth by irradiance during non-El Niño years. Thus, there was a shift in the relative importance of factors controlling growth of juvenile M. pyrifera during El Niño.  相似文献   

18.
Abstract: The world's most endangered marine cetacean, the vaquita (   Phocoena sinus ), continues to be caught in small-mesh gillnet fisheries throughout much of its range. We monitored fishing effort and incidental vaquita mortality in the upper Gulf of California, Mexico, from January 1993 to January 1995 to study the magnitude and causes of the incidental take. Of those factors studied, including net mesh size, soaktime, and geographic area, none contributed significantly to the incidental mortality rate of the vaquita, implying that the principal cause of mortality is fishing with gillnets per se . The total estimated incidental mortality caused by the fleet of El Golfo de Santa Clara was 39 vaquitas per year (95% CI = 14, 93), over 17% of the most recent estimate of population size. El Golfo de Santa Clara is one of three main ports that support gillnet fisheries throughout the range of the vaquita. Preliminary results indicate that fishing effort for San Felipe, Baja California, is comparable to that of El Golfo de Santa Clara, suggesting that this estimate of incidental mortality of vaquitas represents a minimum. We strongly recommend a complete and permanent ban on gillnets in the area. Alternative or supplemental mitigation strategies include (1) a maximum annual allowable mortality limit of vaquitas; (2) mandatory observer coverage of all boats fishing within the Upper Gulf of California and Colorado River Delta Biosphere Reserve; (3) extension of the Upper Gulf of California and Colorado River Delta Biosphere Reserve to encompass all known vaquita habitat; (4) rigorous enforcement of new and existing regulations; and (5) development of alternative sources of income for gillnet fishers.  相似文献   

19.
Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Ni?o and non-El Ni?o years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Ni?o event since 1965. Fewer brant were observed on the principal breeding area following each El Ni?o since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter. Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Ni?o event in the winter of 1997-1998 than in non-El Ni?o years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska.  相似文献   

20.
The 1997/1998 El Niño Southern Oscillation (ENSO) was the most severe coral bleaching event in recent history, resulting in the loss of 16 % of the world’s coral reefs. Mortality was particularly severe in French Polynesia, where unprecedented mortality of massive Porites was observed in lagoonal sites of Rangiroa Atoll. To assess the recovery of massive Porites 15 years later, we resurveyed the size structure and extent of partial mortality of massive Porites at Tivaru (Rangiroa). Surveys revealed an abundance of massive Porites colonies rising from the shallow lagoonal floor. Colony width averaged 2.65 m, reaching a maximum of 7.1 m (estimated age of ~391 ± 107 years old). The relative cover of recently dead skeleton within quadrats declined from 42.8 % in 1998 to zero in 2013, yet the relative cover of old dead skeleton increased only marginally from 22.1 % in 1998 to 26.1 % in 2013. At a colony level, the proportion of Porites dominated by living tissue increased from 34.9 % in 1998 to 73.9 % in 2013, indicating rapid recovery of recent dead skeleton to living tissue rather than transitioning to old dead skeleton. Such rapid post-bleaching recovery is unprecedented in massive Porites and resulted from remarkable self-regeneration termed the ‘Phoenix effect’, whereby remnant cryptic patches of tissue that survived the 1997/1998 ENSO event regenerated and rapidly overgrew adjacent dead skeleton. Contrary to our earlier predictions, not only are large massive Porites relatively resistant to stress, they appear to have a remarkable capacity for recovery even after severe partial mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号