首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
AcumulationofheavymetalsintwocropsedsduetosoilcontaminationasdeterminedbyneutronactivationanalysistechniquesM.F.AbdelSabourS...  相似文献   

2.
贾培寅  王馨  花玉婷  姜志翔 《环境科学》2023,44(9):5025-5035
通过土壤培养实验研究了4种不同堆肥[纯城市污水污泥堆肥、玉米秸秆生物炭(CSB)改良堆肥、益生菌菌剂(EM)改良堆肥和CSB+EM改良堆肥]在土壤中的碳、氮、磷和钾等养分释放特性及其对土壤溶解有机质(DOM)光谱特征、微生物群落的影响.结果表明,堆肥添加可显著降低土壤的pH,提高土壤的电导率,同时提高土壤中植物可利用养分[如可溶性有机碳(DOC)、NH4+-N、NO3--N、速效磷(AP)和速效钾(AK)]含量;比较不同堆肥发现CSB+EM改良堆肥(CSB+EM-C)具备更高的养分释放潜力,且同时显著提高土壤DOM的腐殖化程度;高通量测序结果发现堆肥添加可以增加优势菌门水平上的相对丰度(如变形菌门、厚壁菌门、拟杆菌门和放线菌门),但不同堆肥之间有所差异,其中CSB+EM-C的提高潜力最大.综合上述结果证实CSB+EM的堆肥工艺具有最佳的堆肥养分供应和改善土壤质量的潜力.该研究能够为建立有效的城市污水污泥资源化利用和滨海湿地退化土壤改良综合技术策略提供科学的理论依据.  相似文献   

3.
Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on arable fields as organic amendments. Proper management of urban waste composts (UWC) requires a capacity to predict their impacts on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role.Here, we used a deterministic soil-crop model to simulate C–N dynamics in an arable field amended with three types of UWC (green waste and sludge, biodegradable waste, and solid waste), and a reference amendment (farmyard manure). The model is a version of CERES in which the soil C–N module was substituted with the NCSOIL model, whose microbiological parameters were determined from either laboratory incubation data or biochemical fractionation in a previous paper. CERES was tested against data from a field trial set up in 1998 in the Paris area, and managed as a maize (Zea mays L.)–wheat (Triticum aestivum L.) rotation. Comparison of observed and simulated data over the first 4 years of the field trial showed that CERES predicted the soil moisture and inorganic N dynamics reasonably well, as well as the variations in soil organic C. In particular, the parameterization of UWC organic matter from biochemical fractions achieved a similar fit as the parameterization based on incubation data. Wheat yields were also correctly predicted, but a systematic under-estimation of maize yields pointed at an under-estimation of spring and summer mineralization of N by CERES.Simulated N fluxes showed that the organic amendments induced an additional leaching ranging from 1 to 8 kg N ha−1 yr−1, which can be related to the initial mineral N content of the amendments. After 4 years, the composts had mineralized 3–8% of their initial organic N content, depending on their stability. Composts with slower N release had higher N availability for the crops. CERES could thus be used to aid in selecting the timing of compost application, in relation to its stability, based on both environmental and agronomical criteria.  相似文献   

4.
It is obvious that the application of solid waste compost improves the soil fertility. These wastes, however, may also have some negative effects on the agricultural environment due to their metal content. This research aimed at evaluating the influence of Tunisian municipal solid waste compost and farmyard manure on some chemical properties and the distribution of heavy metals in a calcareous Tunisian soil (clayey–loamy soil). A field plot experiment, without vegetation, was installed since 1999 at the experimental farm of the Agronomic National Institute of Tunis (INAT) in the region of Mornag (20 km south of Tunis, Tunisia). During 5 years, the field received yearly the following treatments: 0, 40, 80 and 120 t/ha of municipal solid waste compost and 0, 40 and 120 t/ha of manure. The fractionation of heavy metals in the soil was evaluated after 5 years using a sequential extraction procedure. The application of the two amendments was found to increase the content of organic matter, the total nitrogen content and the electrical conductivity, whereas it slightly decreased the soil pH. The addition of manure did not have a significant effect on the accumulation of heavy metals in the soil, whereas compost application increased the total concentration of heavy metals in the soil. The distribution of heavy metals between the different fractions in untreated and treated soils showed the residual fraction to be dominant, followed by the fraction bound to Fe and Mn oxides. The amount of Cu bound to the organic fraction increased with the application rate, which is probably caused by the formation of organic complexes. For the other metals, the increase of the association with organic matter is very limited. The application of compost moreover increases the amount of Zn associated with Fe and Mn oxides. The “Mobility Factor (MF)” was quite low and did not change after the 5-year application of the two organic amendments. It always remained lower than 10%, although for Cd it amounted to 17%.  相似文献   

5.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.  相似文献   

6.
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to − 350 mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0 tons/ha under 100% water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C.  相似文献   

7.
城市污泥及其堆肥施用对通菜中有机污染物的累积效应   总被引:19,自引:1,他引:19  
Mo C  Cai Q  Wu Q  Wang B  Li G  Zhu X 《环境科学》2002,23(5):52-56
在水稻土上施用城市污泥及其堆肥盆栽通菜,应用GC/MS联机检测技术对植株中8类共44种有机污染物进行系统分析。结果表明,通菜中检出28种有机化合物,主要是邻苯二甲酸酯类、硝基苯类和多环芳烃类化合物。各类污染物均以个别或少数化合物为主,其它化合物的含量低得多或未检出。施用污泥的通菜中有机污染物的含量普遍较高,是空白对照的数倍至数10倍,而施用各种污泥堆肥的通菜中有机污染物的含量普遍较低,甚至低于空白对照,尤其是施用污泥加牛粪堆肥的通菜中仅检出1种化合物。因此,污泥直接施用可能导致作物中有机污染物的吸收累积,需经适当的堆肥处理后施用才较为安全。  相似文献   

8.
本研究首先通过土壤培养实验,研究了在"石灰+沸石"的基础上,配施不同无机磷、不同有机物对酸性重金属复合污染土壤的改良效果,从中筛选4个最佳改良剂配方,并设置两种改良剂浓度梯度,以空心菜为供试植物进行盆栽实验.土壤培养实验显示,在施加"石灰+沸石"的基础上,配施有机肥或(和)无机磷能够进一步提高土壤pH,降低土壤重金属Cd、Pb、Cu、Zn的有效态含量;蘑菇渣和猪粪对土壤中4种重金属的固化效果优于鸡粪,钙镁磷肥的效果优于羟基磷灰石和磷矿粉.盆栽实验发现,8种处理均显著增加了土壤pH和降低了Cd、Pb、Cu、Zn的有效态含量,其中,处理H1、H2、H4(即在4 g·kg~(-1)沸石+2 g·kg~(-1)石灰石+3 g·kg~(-1)钙镁磷肥(磷矿粉)基础上,配施4 g·kg~(-1)有机物(猪粪或蘑菇渣))改良土壤后,空心菜生长健康,其地上部Cd、Pb、Cu、Zn含量均可达到食品卫生标准.比较土壤中重金属的化学形态,改良剂可能通过增加土壤pH及与重金属发生沉吸、附淀、络合等一系列反应,促进重金属由可交换态向铁锰氧化物结合态转换,从而显著降低了土壤重金属的生物有效性和减少空心菜对重金属的吸收.  相似文献   

9.
IntroductionMostsoilpollutionsituationsinvolveseveralpollutantsactingsimultaneously .Thepracticalassessmentoftheoveralltoxicityhasthereforeremainedamajorproblem .AmongthenegativeeffectsofexplorationandproductionactivitiesinoilproducingcommunitiesinNige…  相似文献   

10.
不同物料堆肥腐熟度评价指标的变化特性   总被引:21,自引:0,他引:21  
为探讨工厂化好氧堆肥的堆肥周期及腐熟度评价体系,提高工厂堆肥效率,选取上海地区不同来源典型的9种物料,采用工厂化工艺进行堆肥试验,对堆体的温度、含水率、pH、C/N、w(OM)、ρ(NH4+-N)、ρ(NO3--N)、ρ(DOC)、ρ(DOC)/ρ(DON)及GI(种子发芽指数)腐熟度评价指标变化规律进行研究. 结果表明:堆肥腐熟度受多方面因素影响,T〔(C/N)终点/(C/N)起点)〕与w(OM)、ρ(NH4+-N)、GI、ρ(DOC)/ρ(DON)之间相关性显著,T、ρ(NH4+-N)、GI 3个指标能准确有效地判断堆肥腐熟情况,堆肥结束后T在0.50~0.59之间,ρ(NH4+-N)为301~346 mg/L,GI为81.31%~91.03%. 不同物料堆肥腐熟难易程度不同,通过聚类分析将9种物料分为5类:第1类,厨余、杂草、生活垃圾、园林垃圾;第2类,果蔬、污泥;第3类,秸秆;第4类,鸡粪;第5类,猪粪. 厨余、杂草、生活垃圾、园林垃圾、污泥、秸秆堆肥成分复杂较难腐熟,需要35 d达到腐熟标准;鸡粪及猪粪堆肥结构简单较易腐熟,29 d即可达到腐熟标准. 据此可适当将工厂化堆肥周期缩短为35 d.   相似文献   

11.
复合菌剂秸秆堆肥对土壤碳氮含量和酶活性的影响   总被引:3,自引:1,他引:2  
秸秆资源化利用对于农业环境保护和可持续农业发展具有重要意义.利用实验室分离获得的15株高效纤维素降解菌,筛选出可有效降解秸秆的复合菌剂JFB-1,研究了复合菌剂秸秆堆肥对土壤碳氮含量和酶活性的影响.结果表明,接种该复合菌剂能将秸秆堆肥的单个发酵周期缩短1~2 d,堆肥中有机质含量达到403.5~515.1 g·kg-1,C/N比降低至15.30~10.53.盆栽试验发现,施用水稻秸秆堆肥的效果总体好于相应的芦笋秸秆堆肥.与水稻秸秆对照堆肥比较,施用复合菌剂处理的水稻秸秆堆肥150 g·kg-1时,土壤中有机质和全氮含量分别提高33.5%和7.3%,土壤脲酶和纤维素酶活性分别提高16.7%和30.8%;与不施肥处理比较,施用秸秆堆肥可改善土壤微生物群落结构,增加微生物多样性指数.当施用复合菌剂处理的水稻秸秆堆肥100 g·kg-1时,栽培30 d的普通白菜生物量比水稻秸秆对照堆肥提高46.4%,表明复合菌剂JFB-1在秸秆堆肥中具有很大的应用潜力.  相似文献   

12.
生活垃圾堆肥对难溶性磷有效性的影响   总被引:8,自引:1,他引:7  
生活垃圾在堆肥过程中将产生有机酸类物质,这些酸性物质对难溶性磷具有较强的溶解能力.本研究在生活垃圾堆肥过程中,加入难溶性磷矿粉,系统探讨堆肥对难溶性磷的转化及堆肥产品对磷素有效性的影响.研究表明,速效磷在堆肥中后期达到最大值,并在堆肥的后期相对稳定,堆肥结束后,扣除磷矿粉本身含有的速效磷对堆肥的影响,与不加磷矿粉堆肥相比,P1、P2堆肥处理方式速效磷含量增加值分别为0.87 g·kg-1、0.76 g·kg-1.电镜观察表明,堆肥结束后,磷矿粉表面棱角消失,呈蜂窝状.堆肥产品培肥后,富磷垃圾肥在作物生育期内,土壤速效磷含量、酸性磷酸酶活性均高于垃圾肥、腐熟鸡粪及化肥.  相似文献   

13.
We studied the dynamics of mercury (Hg) transfer in Phaseolus vulgaris plants grown in soil with Hg-doped compost at the maximum levels permitted by Colombian law on organic amendments. Quantitative evaluation of transfer was made in different plant organs: roots, stem, leaves, pods and seeds. Matrix effect was determined in doped soil assays, using soil with and without addition of compost. Results showed that the use of organic matter reduced Hg transfer to the plant and the amount transferred was differentially distributed to the organs. We observed an inverse relationship between concentration and distance from the body to the root. It was evident that transfer was mediated by quantitative factors; the greater the presence of mercury in soil, the larger the amount that will be transferred. Results also indicate the remedial effect of compost and the presence of a barrier, at the root level, against mercury translocation to the plant aerial parts.  相似文献   

14.
施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响   总被引:19,自引:1,他引:18  
生物炭是一种重要的土壤改良剂,为深入研究其对云南烟区红壤团聚体组成及有机碳分布的作用,开展了为期3年的生物炭田间定位试验.试验共设3个处理,分别为常规施肥(B0)、常规施肥配施生物炭15 t·hm-2(B15)、常规施肥配施生物炭30 t·hm-2(B30).结果表明:1随着生物炭施用年限和施用量的增加,土壤有机碳含量显著增加,B15和B30处理较对照(B0)分别增加了38.7%和60.1%;2施用生物炭显著提高了土壤各粒级团聚体有机碳含量,其中B30处理增幅最大.在不同粒级团聚体中0.25~2 mm团聚体有机碳含量增幅最大,与对照相比,B15和B30处理分别增加了24.9%和36.4%;3施炭处理(B15,B30)土壤团聚体平均重量直径(MWD)、几何平均直径(GMD)和大于0.25 mm团聚体数量(R0.25)也较对照显著增加,表明土壤团聚体稳定性显著提高;4连续施用生物炭3年后,大团聚体有机碳的贡献率明显升高,而微团聚体则相反.综上所述,生物炭对土壤团聚体和有机碳的作用过程是持续的,连续施用生物炭可显著提升土壤大团聚体含量、团聚体稳定性、土壤和各粒级团聚体的有机碳含量,在改善土壤物理性状的同时,有利于稳定增加土壤碳汇.  相似文献   

15.
Different aggregates vary in their ability to retain or adsorb metals in soil. Five soil profiles were sampled from different soil horizons and grouped, and the concentrations of Al, Mg,Ca, Fe, Mn, Cd, Cu and Pb were determined in six sizes of aggregates(> 2, 2-1, 1-0.6, 0.6-0.25,0.25-0.053, < 0.053 mm). Significantly high(p < 0.05) structural stability indexes(SSI) and aggregate stability indexes(ASI) were recorded in the topsoil horizon, which may be attributed to the high soil organi...  相似文献   

16.
No-till (NT) farming is considered as a potential strategy for sequestering C in the soil. Data on soil-profile distribution of C and related soil properties are, however, limited, particularly for semiarid regions. We assessed soil C pool and soil structural properties such as aggregate stability and strength to 1 m soil depth across three long-term (≥21 year) NT and conventional till (CT) experiments along a precipitation gradient in the central Great Plains of the USA. Tillage systems were in continuous winter wheat (Triticum aestivum L.) on a loam at Hutchinson and winter wheat-sorghum [Sorghum bicolor (L.) Moench]-fallow on silt loams at Hays and Tribune, Kansas. Mean annual precipitation was 889 mm for Hutchinson, 580 mm for Hays, and 440 mm for Tribune. Changes in profile distribution of soil properties were affected by differences in precipitations input among the three sites. At Hutchinson, NT had 1.8 times greater SOC pool than CT in the 0-2.5-cm depth, but CT had 1.5 times greater SOC pool in the 5-20-cm. At Hays, NT had 1.4 times greater SOC pool than CT in the 0-2.5-cm depth. Differences in summed SOC pool for the whole soil profile (0-1 m depth) between NT and CT were not significant at any site. The summed SOC pool with depth between NT and CT were only significant above the 5 cm depth at Hutchinson and 2.5 cm depth at Hays. At Hutchinson, NT stored 3.4 Mg ha−1 more SOC than CT above 5 cm depth. At Hays, NT stored 1.35 Mg ha−1 more SOC than CT above 2.5 cm depth. Moreover, NT management increased mean weight diameter of aggregates (MWDA) by 3 to 4 times for the 0-5-cm depth at Hutchinson and by 1.8 times for the 0-2.5-cm depth at Hays. It also reduced air-dry aggregate tensile strength (TS) for the 0-5-cm depth at Hutchinson and Hays and for the 0-2.5-cm depth at Tribune. The TS (r = −0.73) and MWDA (r = 0.81) near the soil surface were more strongly correlated with SOC concentration at Hutchinson than at Hays and Tribune attributed to differences in precipitation input. Results suggested NT impacts on increasing SOC pool and improving soil structural properties decreased with a decrease in precipitation input. Changes in soil properties were larger at Hutchinson (880 mm of precipitation) than at Hays and Tribune (≤580 mm). While NT management did not increase SOC pool over CT for the whole soil profile, the greater near-surface accumulation of SOC in NT than in CT was critical to the improvement in soil structural properties. Overall, differences in precipitation input among soils appeared to be the dominant factor influencing NT impacts on soil-profile distribution of SOC and soil structural properties in this region.  相似文献   

17.
Results from the UK were reviewed to quantify the impact on climate change mitigation of soil organic carbon (SOC) stocks as a result of (1) a change from conventional to less intensive tillage and (2) addition of organic materials including farm manures, digested biosolids, cereal straw, green manure and paper crumble. The average annual increase in SOC deriving from reduced tillage was 310 kg C ± 180 kg C ha−1 yr−1. Even this accumulation of C is unlikely to be achieved in the UK and northwest Europe because farmers practice rotational tillage. N2O emissions may increase under reduced tillage, counteracting increases in SOC. Addition of biosolids increased SOC (in kg C ha−1 yr−1 t−1 dry solids added) by on average 60 ± 20 (farm manures), 180 ± 24 (digested biosolids), 50 ± 15 (cereal straw), 60 ± 10 (green compost) and an estimated 60 (paper crumble). SOC accumulation declines in long-term experiments (>50 yr) with farm manure applications as a new equilibrium is approached. Biosolids are typically already applied to soil, so increases in SOC cannot be regarded as mitigation. Large increases in SOC were deduced for paper crumble (>6 t C ha−1 yr−1) but outweighed by N2O emissions deriving from additional fertiliser. Compost offers genuine potential for mitigation because application replaces disposal to landfill; it also decreases N2O emission.  相似文献   

18.
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. > 10, 1–10, 0.5–1, 0.2–0.5 and < 0.2 μm) for a purple soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (< 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles (< 0.2 μm). Vermiculite, illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the < 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties.  相似文献   

19.
The responses of soil ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB) to mercury(Hg) stress were investigated through a short-term incubation experiment.Treated with four different concentrations of Hg(CK,Hg25,Hg50,and Hg100,denoting 0,25,50,and 100 mg Hg/kg dry soil,respectively),samples were harvested after 3,7,and 28 day incubation.Results showed that the soil potential nitrification rate(PNR) was significantly inhibited by Hg stress during the incubation.However,lower abundances of AOA(the highest in CK: 9.20 × 10~7 copies/g dry soil; the lowest in Hg50: 2.68 × 10~7 copies/g dry soil) and AOB(the highest in CK: 2.68 × 10~7 copies/g dry soil; the lowest in Hg50:7.49 × 10~6 copies/g dry soil) were observed only at day 28 of incubation(P 0.05).Moreover,only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles,which revealed that 2–3 distinct AOB bands emerged in the Hg treatments at day 28.In summary,soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems,and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future.  相似文献   

20.
Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu2 +) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu2 + sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu2 + sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu2 + sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu2 + (R2 > 0.97), and it was still good under different pH values (R2 > 0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu2 + sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu2 + sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu2 + sorption. It indicated that aluminum dissolution is associated with non-specific sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号